var P = {version: "1.0.0"} P.PlotUtils = {}, P.PlotUtils.distance = function(t, o) { return Math.sqrt(Math.pow(t[0] - o[0], 2) + Math.pow(t[1] - o[1], 2)) }, P.PlotUtils.wholeDistance = function(t) { for (var o = 0, e = 0; e < t.length - 1; e++) o += P.PlotUtils.distance(t[e], t[e + 1]); return o }, P.PlotUtils.getBaseLength = function(t) { return Math.pow(P.PlotUtils.wholeDistance(t), .99) }, P.PlotUtils.mid = function(t, o) { return [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2] }, P.PlotUtils.getCircleCenterOfThreePoints = function(t, o, e) { var r = [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2], n = [r[0] - t[1] + o[1], r[1] + t[0] - o[0]], g = [(t[0] + e[0]) / 2, (t[1] + e[1]) / 2], i = [g[0] - t[1] + e[1], g[1] + t[0] - e[0]]; return P.PlotUtils.getIntersectPoint(r, n, g, i) }, P.PlotUtils.getIntersectPoint = function(t, o, e, r) { if (t[1] == o[1]) { var n = (r[0] - e[0]) / (r[1] - e[1]), g = n * (t[1] - e[1]) + e[0], i = t[1]; return [g, i] } if (e[1] == r[1]) { var s = (o[0] - t[0]) / (o[1] - t[1]); return g = s * (e[1] - t[1]) + t[0], i = e[1], [g, i] } return s = (o[0] - t[0]) / (o[1] - t[1]), n = (r[0] - e[0]) / (r[1] - e[1]), i = (s * t[1] - t[0] - n * e[1] + e[0]) / (s - n), g = s * i - s * t[1] + t[0], [g, i] }, P.PlotUtils.getAzimuth = function(t, o) { var e, r = Math.asin(Math.abs(o[1] - t[1]) / P.PlotUtils.distance(t, o)); return o[1] >= t[1] && o[0] >= t[0] ? e = r + Math.PI : o[1] >= t[1] && o[0] < t[0] ? e = P.Constants.TWO_PI - r : o[1] < t[1] && o[0] < t[0] ? e = r : o[1] < t[1] && o[0] >= t[0] && (e = Math.PI - r), e }, P.PlotUtils.getAngleOfThreePoints = function(t, o, e) { var r = P.PlotUtils.getAzimuth(o, t) - P.PlotUtils.getAzimuth(o, e); return 0 > r ? r + P.Constants.TWO_PI : r }, P.PlotUtils.isClockWise = function(t, o, e) { return (e[1] - t[1]) * (o[0] - t[0]) > (o[1] - t[1]) * (e[0] - t[0]) }, P.PlotUtils.getPointOnLine = function(t, o, e) { var r = o[0] + t * (e[0] - o[0]), n = o[1] + t * (e[1] - o[1]); return [r, n] }, P.PlotUtils.getCubicValue = function(t, o, e, r, n) { t = Math.max(Math.min(t, 1), 0); var g = 1 - t, i = t * t, s = i * t, a = g * g, l = a * g, u = l * o[0] + 3 * a * t * e[0] + 3 * g * i * r[0] + s * n[0], c = l * o[1] + 3 * a * t * e[1] + 3 * g * i * r[1] + s * n[1]; return [u, c] }, P.PlotUtils.getThirdPoint = function(t, o, e, r, n) { var g = P.PlotUtils.getAzimuth(t, o), i = n ? g + e : g - e, s = r * Math.cos(i), a = r * Math.sin(i); return [o[0] + s, o[1] + a] }, P.PlotUtils.getArcPoints = function(t, o, e, r) { var n, g, i = [], s = r - e; s = 0 > s ? s + P.Constants.TWO_PI : s; for (var a = 0; a <= P.Constants.FITTING_COUNT; a++) { var l = e + s * a / P.Constants.FITTING_COUNT; n = t[0] + o * Math.cos(l), g = t[1] + o * Math.sin(l), i.push([n, g]) } return i }, P.PlotUtils.getBisectorNormals = function(t, o, e, r) { var n = P.PlotUtils.getNormal(o, e, r), g = Math.sqrt(n[0] * n[0] + n[1] * n[1]), i = n[0] / g, s = n[1] / g, a = P.PlotUtils.distance(o, e), l = P.PlotUtils.distance(e, r); if (g > P.Constants.ZERO_TOLERANCE) if (P.PlotUtils.isClockWise(o, e, r)) { var u = t * a, c = e[0] - u * s, p = e[1] + u * i, h = [c, p]; u = t * l, c = e[0] + u * s, p = e[1] - u * i; var d = [c, p] } else u = t * a, c = e[0] + u * s, p = e[1] - u * i, h = [c, p], u = t * l, c = e[0] - u * s, p = e[1] + u * i, d = [c, p]; else c = e[0] + t * (o[0] - e[0]), p = e[1] + t * (o[1] - e[1]), h = [c, p], c = e[0] + t * (r[0] - e[0]), p = e[1] + t * (r[1] - e[1]), d = [c, p]; return [h, d] }, P.PlotUtils.getNormal = function(t, o, e) { var r = t[0] - o[0], n = t[1] - o[1], g = Math.sqrt(r * r + n * n); r /= g, n /= g; var i = e[0] - o[0], s = e[1] - o[1], a = Math.sqrt(i * i + s * s); i /= a, s /= a; var l = r + i, u = n + s; return [l, u] }, P.PlotUtils.getCurvePoints = function(t, o) { for (var e = P.PlotUtils.getLeftMostControlPoint(o), r = [e], n = 0; n < o.length - 2; n++) { var g = o[n], i = o[n + 1], s = o[n + 2], a = P.PlotUtils.getBisectorNormals(t, g, i, s); r = r.concat(a) } var l = P.PlotUtils.getRightMostControlPoint(o); r.push(l); var u = []; for (n = 0; n < o.length - 1; n++) { g = o[n], i = o[n + 1], u.push(g); for (var t = 0; t < P.Constants.FITTING_COUNT; t++) { var c = P.PlotUtils.getCubicValue(t / P.Constants.FITTING_COUNT, g, r[2 * n], r[2 * n + 1], i); u.push(c) } u.push(i) } return u }, P.PlotUtils.getLeftMostControlPoint = function(o) { var e = o[0], r = o[1], n = o[2], g = P.PlotUtils.getBisectorNormals(0, e, r, n), i = g[0], s = P.PlotUtils.getNormal(e, r, n), a = Math.sqrt(s[0] * s[0] + s[1] * s[1]); if (a > P.Constants.ZERO_TOLERANCE) var l = P.PlotUtils.mid(e, r), u = e[0] - l[0], c = e[1] - l[1], p = P.PlotUtils.distance(e, r), h = 2 / p, d = -h * c, f = h * u, E = d * d - f * f, v = 2 * d * f, A = f * f - d * d, _ = i[0] - l[0], y = i[1] - l[1], m = l[0] + E * _ + v * y, O = l[1] + v * _ + A * y; else m = e[0] + t * (r[0] - e[0]), O = e[1] + t * (r[1] - e[1]); return [m, O] }, P.PlotUtils.getRightMostControlPoint = function(o) { var e = o.length, r = o[e - 3], n = o[e - 2], g = o[e - 1], i = P.PlotUtils.getBisectorNormals(0, r, n, g), s = i[1], a = P.PlotUtils.getNormal(r, n, g), l = Math.sqrt(a[0] * a[0] + a[1] * a[1]); if (l > P.Constants.ZERO_TOLERANCE) var u = P.PlotUtils.mid(n, g), c = g[0] - u[0], p = g[1] - u[1], h = P.PlotUtils.distance(n, g), d = 2 / h, f = -d * p, E = d * c, v = f * f - E * E, A = 2 * f * E, _ = E * E - f * f, y = s[0] - u[0], m = s[1] - u[1], O = u[0] + v * y + A * m, T = u[1] + A * y + _ * m; else O = g[0] + t * (n[0] - g[0]), T = g[1] + t * (n[1] - g[1]); return [O, T] }, P.PlotUtils.getBezierPoints = function(t) { if (t.length <= 2) return t; for (var o = [], e = t.length - 1, r = 0; 1 >= r; r += .01) { for (var n = y = 0, g = 0; e >= g; g++) { var i = P.PlotUtils.getBinomialFactor(e, g), s = Math.pow(r, g), a = Math.pow(1 - r, e - g); n += i * s * a * t[g][0], y += i * s * a * t[g][1] } o.push([n, y]) } return o.push(t[e]), o }, P.PlotUtils.getBinomialFactor = function(t, o) { return P.PlotUtils.getFactorial(t) / (P.PlotUtils.getFactorial(o) * P.PlotUtils.getFactorial(t - o)) }, P.PlotUtils.getFactorial = function(t) { if (1 >= t) return 1; if (2 == t) return 2; if (3 == t) return 6; if (4 == t) return 24; if (5 == t) return 120; for (var o = 1, e = 1; t >= e; e++) o *= e; return o }, P.PlotUtils.getQBSplinePoints = function(t) { if (t.length <= 2) return t; var o = 2, e = [], r = t.length - o - 1; e.push(t[0]); for (var n = 0; r >= n; n++) for (var g = 0; 1 >= g; g += .05) { for (var i = y = 0, s = 0; o >= s; s++) { var a = P.PlotUtils.getQuadricBSplineFactor(s, g); i += a * t[n + s][0], y += a * t[n + s][1] } e.push([i, y]) } return e.push(t[t.length - 1]), e }, P.PlotUtils.getQuadricBSplineFactor = function(t, o) { return 0 == t ? Math.pow(o - 1, 2) / 2 : 1 == t ? (-2 * Math.pow(o, 2) + 2 * o + 1) / 2 : 2 == t ? Math.pow(o, 2) / 2 : 0 },P.Constants = { TWO_PI: 2 * Math.PI, HALF_PI: Math.PI / 2, FITTING_COUNT: 100, ZERO_TOLERANCE: 1e-4 }