cesium-examples/3dmap/Build/Cesium/CesiumBuild.js

3298 lines
151 KiB
JavaScript
Raw Normal View History

2019-11-21 15:46:14 +08:00
/*
* @Descripttion:
* @version: 1.0
* @Author: zhangti
* @Date: 2019-10-25 16:56:12
* @LastEditors: sueRimn
* @LastEditTime: 2019-11-21 09:14:33
*/
/**
* cesium 初始化
* 全局变量
* 补充代码
*/
/***
* -------------------
* Init
* 插件导航: ctrl + f [xxx.js]
* cesiumBuild
* 雷达 sensor.js
* 经纬网 TileLonlatsImageryProvider.js
* 在线地形图 ArcGisElevation3DTerrainProvider.js
* 标绘 algorithm.js plotUtil.js
* -------------------
*/
/**
* cesiumBuild
* 封装接口
* PolygonArea.js
* EllipseGeometryLibraryEx.js
* SysMathTool.js
* ThreeDTilesToolCopy.js
* PrimitivePoints.js
* ShadowPrimitive.js
* DebugCameraPrimitive.js
* DrawCommand.js
*/
var CesiumBuild = (function(){
function _(){};
/**
* 几何面积计算
* @param {*} coords
*/
_.PolygonArea = function(coords){
var areas = 0;
var ringArea = function(coords){
var p1, p2, p3, lowerIndex, middleIndex, upperIndex,
area = 0,
coordsLength = coords.length;
if (coordsLength > 2) {
for (var i = 0; i < coordsLength; i++) {
if (i === coordsLength - 2) {// i = N-2
lowerIndex = coordsLength - 2;
middleIndex = coordsLength -1;
upperIndex = 0;
} else if (i === coordsLength - 1) {// i = N-1
lowerIndex = coordsLength - 1;
middleIndex = 0;
upperIndex = 1;
} else { // i = 0 to N-3
lowerIndex = i;
middleIndex = i+1;
upperIndex = i+2;
}
p1 = coords[lowerIndex];
p2 = coords[middleIndex];
p3 = coords[upperIndex];
area += ( p3.longitude - p1.longitude ) * Math.sin( p2.latitude );
}
area = area * 6378137.0 * 6378137.0 / 2;
}
return area>=0?area:-area;
}
if (coords && coords.length > 0) {
areas = ringArea(coords);
}
return areas;
}
/**
* EllipseGeometryLibraryEx
*/
_.EllipseGeometryLibraryEx = (function () {
var EllipseGeometryLibrary = {};
function pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, result) {
var rotAxis = new Cesium.Cartesian3();
var tempVec = new Cesium.Cartesian3();
var unitQuat = new Cesium.Quaternion();
var rotMtx = new Cesium.Matrix3();
var azimuth = theta + rotation;
Cesium.Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);
Cesium.Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);
Cesium.Cartesian3.add(rotAxis, tempVec, rotAxis);
var cosThetaSquared = Math.cos(theta);
cosThetaSquared = cosThetaSquared * cosThetaSquared;
var sinThetaSquared = Math.sin(theta);
sinThetaSquared = sinThetaSquared * sinThetaSquared;
var radius = ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);
var angle = radius / mag;
// Create the quaternion to rotate the position vector to the boundary of the ellipse.
Cesium.Quaternion.fromAxisAngle(rotAxis, angle, unitQuat);
Cesium.Matrix3.fromQuaternion(unitQuat, rotMtx);
Cesium.Matrix3.multiplyByVector(rotMtx, unitPos, result);
Cesium.Cartesian3.normalize(result, result);
Cesium.Cartesian3.multiplyByScalar(result, mag, result);
return result;
}
/**
* Returns the positions raised to the given heights
* @private
*/
EllipseGeometryLibrary.raisePositionsToHeight = function (positions, options, extrude) {
var scratchCartesian1 = new Cesium.Cartesian3();
var scratchCartesian2 = new Cesium.Cartesian3();
var scratchCartesian3 = new Cesium.Cartesian3();
var scratchNormal = new Cesium.Cartesian3();
var ellipsoid = options.ellipsoid;
var height = options.height;
var extrudedHeight = options.extrudedHeight;
var size = (extrude) ? positions.length / 3 * 2 : positions.length / 3;
var finalPositions = new Float64Array(size * 3);
var length = positions.length;
var bottomOffset = (extrude) ? length : 0;
for (var i = 0; i < length; i += 3) {
var i1 = i + 1;
var i2 = i + 2;
var position = Cesium.Cartesian3.fromArray(positions, i, scratchCartesian1);
ellipsoid.scaleToGeodeticSurface(position, position);
var extrudedPosition = Cesium.Cartesian3.clone(position, scratchCartesian2);
var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
var scaledNormal = Cesium.Cartesian3.multiplyByScalar(normal, height, scratchCartesian3);
Cesium.Cartesian3.add(position, scaledNormal, position);
if (extrude) {
Cesium.Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);
Cesium.Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);
finalPositions[i + bottomOffset] = extrudedPosition.x;
finalPositions[i1 + bottomOffset] = extrudedPosition.y;
finalPositions[i2 + bottomOffset] = extrudedPosition.z;
}
finalPositions[i] = position.x;
finalPositions[i1] = position.y;
finalPositions[i2] = position.z;
}
return finalPositions;
};
/**
* options.semiMinorAxis短半轴
* options.semiMajorAxis长半轴
* options.rotation旋转角度 弧度
* options.center中心点 笛卡尔坐标
* options.granularity粒度 弧度
* Returns an array of positions that make up the ellipse.
* @private
*/
EllipseGeometryLibrary.computeEllipseEdgePositions = function (options) {
var unitPosScratch = new Cesium.Cartesian3();
var eastVecScratch = new Cesium.Cartesian3();
var northVecScratch = new Cesium.Cartesian3();
var scratchCartesian1 = new Cesium.Cartesian3();
var semiMinorAxis = options.semiMinorAxis;
var semiMajorAxis = options.semiMajorAxis;
var rotation = options.rotation;//法线
var center = options.center;
var granularity = options.granularity && (typeof options.granularity === "number") ? options.granularity : (Math.PI / 180.0);// 角度间隔
if (granularity > Math.PI / 12.0) { granularity = Math.PI / 12.0; }//最小分24
if (granularity < Math.PI / 180.0) { granularity = Math.PI / 180.0; }//最大分360
var aSqr = semiMinorAxis * semiMinorAxis;
var bSqr = semiMajorAxis * semiMajorAxis;
var ab = semiMajorAxis * semiMinorAxis;
var mag = Cesium.Cartesian3.magnitude(center);//
var unitPos = Cesium.Cartesian3.normalize(center, unitPosScratch);
var eastVec = Cesium.Cartesian3.cross(Cesium.Cartesian3.UNIT_Z, center, eastVecScratch);
eastVec = Cesium.Cartesian3.normalize(eastVec, eastVec);
var northVec = Cesium.Cartesian3.cross(unitPos, eastVec, northVecScratch);
var numPts = Math.ceil(Cesium.Math.PI*2 / granularity);
var deltaTheta = granularity;
var theta = 0;
var position = scratchCartesian1;
var i;
var outerIndex = 0;
var outerPositions = [];
for (i = 0; i < numPts; i++) {
theta = i * deltaTheta;
position = pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position);
outerPositions[outerIndex++] = position.x;
outerPositions[outerIndex++] = position.y;
outerPositions[outerIndex++] = position.z;
}
var r = {};
r.numPts = numPts;
r.outerPositions = outerPositions;
return r;
};
/**
* options.semiMinorAxis短半轴
* options.semiMajorAxis长半轴
* options.rotation旋转角度 弧度
* options.center中心点 笛卡尔坐标
* options.granularity粒度 弧度
* options.angle角度 弧度
* Returns an array of positions that make up the ellipse.
* @private
*/
EllipseGeometryLibrary.computeSectorEdgePositions = function (options) {
var unitPosScratch = new Cesium.Cartesian3();
var eastVecScratch = new Cesium.Cartesian3();
var northVecScratch = new Cesium.Cartesian3();
var scratchCartesian1 = new Cesium.Cartesian3();
var semiMinorAxis = options.semiMinorAxis;
var semiMajorAxis = options.semiMajorAxis;
var rotation = options.rotation;
var angle = options.angle ? options.angle : Math.PI * 2.0;
var center = options.center;
var granularity = options.granularity && (typeof options.granularity === "number") ? options.granularity : (Math.PI / 180.0);// 角度间隔
if (granularity > Math.PI / 12.0) { granularity = Math.PI / 12.0; }//最小分24
if (granularity < Math.PI / 180.0) { granularity = Math.PI / 180.0; }//最大分360
var aSqr = semiMinorAxis * semiMinorAxis;
var bSqr = semiMajorAxis * semiMajorAxis;
var ab = semiMajorAxis * semiMinorAxis;
var mag = Cesium.Cartesian3.magnitude(center);//
var unitPos = Cesium.Cartesian3.normalize(center, unitPosScratch);
var eastVec = Cesium.Cartesian3.cross(Cesium.Cartesian3.UNIT_Z, center, eastVecScratch);
eastVec = Cesium.Cartesian3.normalize(eastVec, eastVec);
var northVec = Cesium.Cartesian3.cross(unitPos, eastVec, northVecScratch);
var numPts = Math.ceil(angle / granularity);//Math.ceil(Cesium.Math.PI * 2 / granularity);
var deltaTheta = granularity;
var theta = 0;
var position = scratchCartesian1;
var i;
var outerIndex = 0;
var outerPositions = [];
for (i = 0; i < numPts; i++) {
theta = i * deltaTheta;
position = pointOnEllipsoid(theta, rotation, northVec, eastVec, aSqr, ab, bSqr, mag, unitPos, position);
outerPositions[outerIndex++] = position.x;
outerPositions[outerIndex++] = position.y;
outerPositions[outerIndex++] = position.z;
}
var r = {};
r.numPts = numPts;
r.outerPositions = outerPositions;
return r;
};
return EllipseGeometryLibrary;
})();
/**
* SysMathTool
*/
_.SysMathTool = (
function () {
var DeltaDegree = 0.00001;//插值间隔 单位度
var DeltaRadian = 0.00001 * Math.PI / 180.0; //Cesium.Math.RADIANS_PER_DEGREE
function CheckLonDegree(value) {
if (value > 180 || value < -180) {
return false;
}
return true;
}
function CheckLonRadian(value) {
if (value > Math.PI || value < -Math.PI) {
return false;
}
return true;
}
function CheckLatDegree(value) {
if (value > 90 || value < -90) {
return false;
}
return true;
}
function CheckLatRadian(value) {
if (value > Math.PI / 2.0 || value < -Math.PI / 2.0) {
return false;
}
return true;
}
function _() {
}
_.GetDeltaDegree = function () {
return DeltaDegree;
}
_.GetDeltaRadian = function () {
return DeltaRadian;
}
/*
线段插值
经纬度坐标插值
start.lon start.lat 单位:
return [[lon,lat],...]
*/
_.InterpolateLineLonlat = function (start, end) {
if (start && end) { } else { return null; }
if (start.lon && start.lat && end.lon && end.lat) { } else { return null; }
if (CheckLonDegree(start.lon) && CheckLonDegree(end.lon) && CheckLatDegree(start.lat) && CheckLatDegree(end.lat)) { } else { return null; }
var result = [];
result.push([start.lon, start.lat]);
var interval = Math.sqrt(Math.pow((end.lon - start.lon), 2) + Math.pow((end.lat - start.lat), 2));
if (interval <= DeltaDegree) {
//小于最小间隔
result.push([end.lon, end.lat]);
return result;
} else {
var num = interval / DeltaDegree;
var stepLon = (end.lon - start.lon) / num;
var stepLat = (end.lat - start.lat) / num;
for (var i = 0; i < num; i++) {
var lon = start.lon + (i + 1) * stepLon;
var lat = start.lat + (i + 1) * stepLat;
result.push([lon, lat]);
}
}
return result;
}
/*
线段插值
经纬度坐标插值
Cartographic start.longitude start.latitude 单位:弧度
return [Cartographic,...]
*/
_.InterpolateLineCartographic = function (start, end, _Delta) {
if (start && end) { } else { return null; }
if (start.longitude && start.latitude && end.longitude && end.latitude) { } else { return null; }
var result = [];
//开始点
result.push(new Cesium.Cartographic(start.longitude, start.latitude));
var interval = Math.sqrt(Math.pow((end.longitude - start.longitude), 2) + Math.pow((end.latitude - start.latitude), 2));
var delta = _Delta && (typeof _Delta === 'number') ? _Delta : DeltaRadian;
if (interval <= delta) {
//小于最小间隔
result.push(new Cesium.Cartographic(end.longitude, end.latitude));
return result;
} else {
var num = interval / delta;
var stepLon = (end.longitude - start.longitude) / num;
var stepLat = (end.latitude - start.latitude) / num;
for (var i = 0; i < num; i++) {
var lon = start.longitude + (i + 1) * stepLon;
var lat = start.latitude + (i + 1) * stepLat;
result.push(new Cesium.Cartographic(lon, lat));//与最后一个点有偏差
}
result.push(new Cesium.Cartographic(end.longitude, end.latitude, end.height));
}
return result;
}
/*
线段插值
经纬度高程插值
Cartographic start.longitude start.latitude 单位:弧度 start.height 高程单位m
return [Cartographic,...]
*/
_.InterpolateLineHeightCartographic = function (start, end) {
if (start && end) { } else { return null; }
if (start.longitude && start.latitude && end.longitude && end.latitude) { } else { return null; }
var result = [];
result.push(new Cesium.Cartographic(start.longitude, start.latitude, start.height));
var interval = Math.sqrt(Math.pow((end.longitude - start.longitude), 2) + Math.pow((end.latitude - start.latitude), 2));
if (interval <= DeltaRadian) {
//小于最小间隔
result.push(new Cesium.Cartographic(end.longitude, end.latitude, end.height));
return result;
} else {
var num = interval / DeltaRadian;
var stepLon = (end.longitude - start.longitude) / num;
var stepLat = (end.latitude - start.latitude) / num;
var stepHeight = (end.height - start.height) / num;
for (var i = 0; i < num; i++) {
var lon = start.longitude + (i + 1) * stepLon;
var lat = start.latitude + (i + 1) * stepLat;
var hieght = start.height + (i + 1) * stepHeight;
result.push(new Cesium.Cartographic(lon, lat, hieght));
}
result.push(new Cesium.Cartographic(end.longitude, end.latitude, end.height));
}
return result;
}
/*
线段插值
经纬度高程插值
Cartographic start.longitude start.latitude 单位:弧度 start.height 高程单位m
num:分总段数 传入数组长度-1
index:获取到第index点的所有插值 0点是开始点
return [Cartographic,...]
*/
_.Interpolate2IndexLineHeightCartographic = function (start, end, num, curIndex) {
if (start && end) { } else { return null; }
if (start.longitude && start.latitude && end.longitude && end.latitude) { } else { return null; }
var result = [];
result.push(new Cesium.Cartographic(start.longitude, start.latitude, start.height));
var stepLon = (end.longitude - start.longitude) / num;
var stepLat = (end.latitude - start.latitude) / num;
var stepHeight = (end.height - start.height) / num;
for (var i = 0; i < curIndex; i++) {
var lon = start.longitude + (i + 1) * stepLon;
var lat = start.latitude + (i + 1) * stepLat;
var hieght = start.height + (i + 1) * stepHeight;
result.push(new Cesium.Cartographic(lon, lat, hieght));
}
//result.push(new Cesium.Cartographic(end.longitude, end.latitude, end.height));
return result;
}
/*
线段插值 指定第index值
经纬度高程插值
Cartographic start.longitude start.latitude 单位:弧度 start.height 高程单位m
num:分总段数 传入数组长度-1
index:获取第index个插值点 0点是开始点
return Cartographic
*/
_.InterpolateIndexLineHeightCartographic = function (start, end, num, index) {
if (start && end) { } else { return null; }
if (start.longitude && start.latitude && end.longitude && end.latitude) { } else { return null; }
//var delta = _Delta && (typeof _Delta === 'number') ? _Delta : DeltaRadian;
var stepLon = (end.longitude - start.longitude) / num;
var stepLat = (end.latitude - start.latitude) / num;
var stepHeight = (end.height - start.height) / num;
var lon = start.longitude + index * stepLon;
var lat = start.latitude + index * stepLat;
var hieght = start.height + index * stepHeight;
var result = new Cesium.Cartographic(lon, lat, hieght);
return result;
}
return _;
})();
/**
* threeDTilesToolCopy
*/
//获取3DTiles高度
_.ThreeDTilesToolCopy = (
function () {
function _() {}
//传入lonlat数组 角度制的lon lat
_.LonlatPointsTerrainData = function (viewer, lonlats, callback) {
var pointArrInput = [];
for (var i = 0; i < lonlats.length; i++) {
pointArrInput.push(Cesium.Cartographic.fromDegrees(lonlats[i].lon, lonlats[i].lat));
}
var promise = viewer.scene.clampToHeightMostDetailed(pointArrInput);//pointArrInput
promise.then(function (updatedPositions) {
callback(updatedPositions);
});
};
//传入Cartographic类型数组 弧度制经纬度
_.CartographicPointsTerrainData = function (viewer, Cartographics, callback) {
if (Cartographics.length && Cartographics.length > 0) { } else { return; }
var pointArrInput = [];
for (var i = 0; i < Cartographics.length; i++) {
pointArrInput.push(Cesium.Cartesian3.fromRadians(Cartographics[i].longitude, Cartographics[i].latitude, Cartographics[i].height));
}
var promise = viewer.scene.clampToHeightMostDetailed(pointArrInput);//pointArrInput
promise.then(function (updatedPositions) {
var result=[];
var ellipsoid=viewer.scene.globe.ellipsoid;
for(var j=0;j<updatedPositions.length;j++){
result.push(ellipsoid.cartesianToCartographic(updatedPositions[j]));
}
callback(result);
}).otherwise(function(error){
console.log(error)
});
};
return _;
}
)();
/**
* PrimitivePoints
* */
_.PrimitivePoints = (
function () {
var vertexShader;
var fragmentShader;
var geometry;
var appearance;
var viewer;
function _(options) {
viewer = options.viewer;
vertexShader = VSPolylie();
fragmentShader = FSPolyline();
if (options.Cartesians && options.Cartesians.length >= 2) {
var postionsTemp = [];
var colorsTemp = [];
var indicesTesm = [];
if (options.Colors && options.Colors.length === options.Cartesians.length * 4) {
for (var i = 0; i < options.Cartesians.length; i++) {
postionsTemp.push(options.Cartesians[i].x);
postionsTemp.push(options.Cartesians[i].y);
postionsTemp.push(options.Cartesians[i].z);
}
colorsTemp = options.Colors;
} else {
for (var i = 0; i < options.Cartesians.length; i++) {
postionsTemp.push(options.Cartesians[i].x);
postionsTemp.push(options.Cartesians[i].y);
postionsTemp.push(options.Cartesians[i].z);
//
colorsTemp.push(0.0);
colorsTemp.push(0.0);
colorsTemp.push(1.0);
colorsTemp.push(1.0);
}
}
for (var i = 0; i < options.Cartesians.length; i++) {
indicesTesm.push(i);
}
this.positionArr = new Float64Array(postionsTemp);
this.colorArr = new Float32Array(colorsTemp);
this.indiceArr = new Uint16Array(indicesTesm);
} else { // if (options.Cartesians && options.Cartesians.length >= 2) {
var p1 = Cesium.Cartesian3.fromDegrees(0, 0, -10);
var p2 = Cesium.Cartesian3.fromDegrees(0, 0.001, -10);
this.positionArr = new Float64Array([
p1.x, p1.y, p1.z,
p2.x, p2.y, p2.z
]);
//默认蓝色
this.colorArr = new Float32Array([
0.0, 0.0, 1.0, 1.0,
0.0, 0.0, 1.0, 1.0
]);
this.indiceArr = new Uint16Array([0, 1]);
}
geometry = CreateGeometry(this.positionArr, this.colorArr, this.indiceArr);
appearance = CreateAppearence(fragmentShader, vertexShader);
this.primitive = viewer.scene.primitives.add(new Cesium.Primitive({
geometryInstances: new Cesium.GeometryInstance({
geometry: geometry
}),
appearance: appearance,
asynchronous: false
}));
}
function CreateGeometry(positions, colors, indices) {
return new Cesium.Geometry({
attributes: {
position: new Cesium.GeometryAttribute({
componentDatatype: Cesium.ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions
}),
color: new Cesium.GeometryAttribute({
componentDatatype: Cesium.ComponentDatatype.FLOAT,
componentsPerAttribute: 4,
values: colors
})
},
indices: indices,
primitiveType: Cesium.PrimitiveType.POINTS,
boundingSphere: Cesium.BoundingSphere.fromVertices(positions)
});
}
function CreateAppearence(fs, vs) {
return new Cesium.Appearance({
renderState: {
blending: Cesium.BlendingState.PRE_MULTIPLIED_ALPHA_BLEND,
depthTest: { enabled: true },
depthMask: true
},
fragmentShaderSource: fs,
vertexShaderSource: vs
});
}
function VSPolylie() {
return "attribute vec3 position3DHigh;\
attribute vec3 position3DLow;\
attribute vec4 color;\
varying vec4 v_color;\
attribute float batchId;\
void main()\
{\
vec4 p = czm_computePosition();\
v_color =color;\
p = czm_modelViewProjectionRelativeToEye * p;\
gl_Position = p;\
gl_PointSize=4.0;\
}\
";
}
function FSPolyline() {
return "varying vec4 v_color;\
void main()\
{\
float d = distance(gl_PointCoord, vec2(0.5,0.5));\
if(d < 0.5){\
gl_FragColor = v_color;\
}else{\
discard;\
}\
}\
";
}
_.prototype.remove = function () {
if (this.primitive != null) {
viewer.scene.primitives.remove(this.primitive);
this.primitive = null;
}
}
_.prototype.updateCartesianPosition = function (cartesians) {
if (this.primitive != null) {
viewer.scene.primitives.remove(this.primitive);
if (cartesians && cartesians.length < 2) { return; }
if (cartesians.length === this.positionArr.length / 3) {
var p1 = cartesians[0];
var p2 = cartesians[1];
this.positionArr = new Float64Array([
p1.x, p1.y, p1.z,
p2.x, p2.y, p2.z
]);
geometry = CreateGeometry(this.positionArr, this.colorArr, this.indiceArr);
} else {
//默认蓝色
var postionsTemp = [];
var colorsTemp = [];
var indicesTesm = [];
for (var i = 0; i < cartesians.length; i++) {
postionsTemp.push(cartesians[i].x);
postionsTemp.push(cartesians[i].y);
postionsTemp.push(cartesians[i].z);
colorsTemp.push(0.0);
colorsTemp.push(0.0);
colorsTemp.push(1.0);
colorsTemp.push(1.0);
}
for (var i = 0; i < cartesians.length; i++) {
indicesTesm.push(i);
}
this.positionArr = new Float64Array(postionsTemp);
this.colorArr = new Float32Array(colorsTemp);
this.indiceArr = new Uint16Array(indicesTesm);
geometry = CreateGeometry(this.positionArr, this.colorArr, this.indiceArr);
appearance = CreateAppearence(fragmentShader, vertexShader);
}
this.primitive = viewer.scene.primitives.add(new Cesium.Primitive({
geometryInstances: new Cesium.GeometryInstance({
geometry: geometry
}),
appearance: appearance,
asynchronous: false
}));
} else { return; }
}
_.prototype.updateCartesianPositionColor = function (cartesians, colors) {
if (colors.length === cartesians.length * 4) { } else { return; }
if (this.primitive != null) {
viewer.scene.primitives.remove(this.primitive);
if (cartesians && cartesians.length < 2) { return; }
if (cartesians.length === this.positionArr.length / 3) {
var p1 = cartesians[0];
var p2 = cartesians[1];
this.positionArr = new Float64Array([
p1.x, p1.y, p1.z,
p2.x, p2.y, p2.z
]);
this.colorArr = new Float32Array(colors);
geometry = CreateGeometry(this.positionArr, this.colorArr, this.indiceArr);
} else {
var postionsTemp = [];
var indicesTesm = [];
for (var i = 0; i < cartesians.length; i++) {
postionsTemp.push(cartesians[i].x);
postionsTemp.push(cartesians[i].y);
postionsTemp.push(cartesians[i].z);
}
for (var i = 0; i < cartesians.length; i++) {
indicesTesm.push(i);
}
this.positionArr = new Float64Array(postionsTemp);
this.colorArr = new Float32Array(colors);
this.indiceArr = new Uint16Array(indicesTesm);
geometry = CreateGeometry(this.positionArr, this.colorArr, this.indiceArr);
appearance = CreateAppearence(fragmentShader, vertexShader);
}
this.primitive = viewer.scene.primitives.add(new Cesium.Primitive({
geometryInstances: new Cesium.GeometryInstance({
geometry: geometry
}),
appearance: appearance,
asynchronous: false
}));
} else { return; }
}
return _;
})();
/**
* 动态移动实体
*/
_.MoveEntity = (
function () {
var leftDownFlag = false;
var pointDraged = null;
var position = null;
var viewer;
var vueEntity;
var handler;
function ConstructMoveEntity(options) {
viewer = options.viewer;
vueEntity = options.vueEntity;
handler = new Cesium.ScreenSpaceEventHandler(viewer.scene.canvas);
Init();
}
function Init() {
// Select plane when mouse down
handler.setInputAction(function (movement) {
pointDraged = viewer.scene.pick(movement.position);//选取当前的entity
leftDownFlag = true;
if (pointDraged) {
viewer.scene.screenSpaceCameraController.enableRotate = false;//锁定相机
}
}, Cesium.ScreenSpaceEventType.LEFT_DOWN);
// Release plane on mouse up
handler.setInputAction(function () {
leftDownFlag = false;
pointDraged = null;
viewer.scene.screenSpaceCameraController.enableInputs = true;
}, Cesium.ScreenSpaceEventType.LEFT_UP);
// Update plane on mouse move
handler.setInputAction(function (movement) {
if (leftDownFlag === true && pointDraged != null) {
let ray = viewer.camera.getPickRay(movement.endPosition);
position = viewer.scene.globe.pick(ray, viewer.scene);
if(vueEntity != undefined)vueEntity.update(position); //更新
pointDraged.id.position = new Cesium.CallbackProperty(function () {
return position;
}, false);//防止闪烁,在移动的过程
}
}, Cesium.ScreenSpaceEventType.MOUSE_MOVE);
}
ConstructMoveEntity.prototype.remove = function(){
handler.destroy();
}
return ConstructMoveEntity;
})();
return _;
})();
/**
* sensor.js
* 雷达
*/
!function (e, n) {
"object" == typeof exports && "object" == typeof module ? module.exports = n(require("Cesium")) : "function" == typeof define && define.amd ? define(["Cesium"], n) : "object" == typeof exports ? exports.space = n(require("Cesium")) : e.space = n(e.Cesium)
}("undefined" != typeof self ? self : this, function (t) {
return function (t) {
var o = {};
function i(e) {
if (o[e])
return o[e].exports;
var n = o[e] = {
i: e,
l: !1,
exports: {}
};
return t[e].call(n.exports, n, n.exports, i),
n.l = !0,
n.exports
}
return i.m = t,
i.c = o,
i.d = function (e, n, t) {
i.o(e, n) || Object.defineProperty(e, n, {
configurable: !1,
enumerable: !0,
get: t
})
}
,
i.n = function (e) {
var n = e && e.__esModule ? function () {
return e.default
}
: function () {
return e
}
;
return i.d(n, "a", n),
n
}
,
i.o = function (e, n) {
return Object.prototype.hasOwnProperty.call(e, n)
}
,
i.p = "",
i(i.s = 2)
}([function (e, n) {
e.exports = t
}
, function (e, n, t) {
"use strict";
Object.defineProperty(n, "__esModule", {
value: !0
}),
n.RectangularSensorPrimitive = void 0;
var T = o(t(0))
, b = o(t(3))
, L = o(t(4))
, z = o(t(5))
, D = o(t(6));
function o(e) {
return e && e.__esModule ? e : {
default: e
}
}
var V = T.default.BoundingSphere
, R = T.default.Cartesian3
, i = T.default.Color
, h = T.default.combine
, I = T.default.ComponentDatatype
, r = T.default.defaultValue
, a = T.default.defined
, O = (T.default.defineProperties,
T.default.destroyObject,
T.default.DeveloperError)
, H = T.default.Matrix4
, s = T.default.PrimitiveType
, W = T.default.Buffer
, F = T.default.BufferUsage
, l = T.default.DrawCommand
, B = T.default.Pass
, N = T.default.RenderState
, k = T.default.ShaderProgram
, Y = T.default.ShaderSource
, G = T.default.VertexArray
, X = T.default.BlendingState
, q = T.default.CullFace
, u = T.default.Material
, U = T.default.SceneMode
, j = T.default.VertexFormat
, Z = T.default.Math
, Q = T.default.Matrix3
, J = (H = T.default.Matrix4,
T.default.JulianDate)
, m = (T.default.BoxGeometry,
T.default.EllipsoidGeometry,
Math.sin)
, K = Math.cos
, $ = Math.tan
, ee = Math.atan
, ne = (Math.asin,
{
position: 0,
normal: 1
});
function c(e) {
var n = this;
e = r(e, r.EMPTY_OBJECT),
this.show = r(e.show, !0),
this.slice = r(e.slice, 32),
this.modelMatrix = H.clone(e.modelMatrix, new H),
this._modelMatrix = new H,
this._computedModelMatrix = new H,
this._computedScanPlaneModelMatrix = new H,
this.radius = r(e.radius, Number.POSITIVE_INFINITY),
this._radius = void 0,
this.xHalfAngle = r(e.xHalfAngle, 0),
this._xHalfAngle = void 0,
this.yHalfAngle = r(e.yHalfAngle, 0),
this._yHalfAngle = void 0,
this.lineColor = r(e.lineColor, i.WHITE),
this.showSectorLines = r(e.showSectorLines, !0),
this.showSectorSegmentLines = r(e.showSectorSegmentLines, !0),
this.showLateralSurfaces = r(e.showLateralSurfaces, !0),
this.material = a(e.material) ? e.material : u.fromType(u.ColorType),
this._material = void 0,
this._translucent = void 0,
this.lateralSurfaceMaterial = a(e.lateralSurfaceMaterial) ? e.lateralSurfaceMaterial : u.fromType(u.ColorType),
this._lateralSurfaceMaterial = void 0,
this._lateralSurfaceTranslucent = void 0,
this.showDomeSurfaces = r(e.showDomeSurfaces, !0),
this.domeSurfaceMaterial = a(e.domeSurfaceMaterial) ? e.domeSurfaceMaterial : u.fromType(u.ColorType),
this._domeSurfaceMaterial = void 0,
this.showDomeLines = r(e.showDomeLines, !0),
this.showIntersection = r(e.showIntersection, !0),
this.intersectionColor = r(e.intersectionColor, i.WHITE),
this.intersectionWidth = r(e.intersectionWidth, 5),
this.showThroughEllipsoid = r(e.showThroughEllipsoid, !1),
this._showThroughEllipsoid = void 0,
this.showScanPlane = r(e.showScanPlane, !0),
this.scanPlaneColor = r(e.scanPlaneColor, i.WHITE),
this.scanPlaneMode = r(e.scanPlaneMode, "horizontal"),
this.scanPlaneRate = r(e.scanPlaneRate, 10),
this._scanePlaneXHalfAngle = 0,
this._scanePlaneYHalfAngle = 0,
this._time = J.now(),
this._boundingSphere = new V,
this._boundingSphereWC = new V,
this._sectorFrontCommand = new l({
owner: this,
primitiveType: s.TRIANGLES,
boundingVolume: this._boundingSphereWC
}),
this._sectorBackCommand = new l({
owner: this,
primitiveType: s.TRIANGLES,
boundingVolume: this._boundingSphereWC
}),
this._sectorVA = void 0,
this._sectorLineCommand = new l({
owner: this,
primitiveType: s.LINES,
boundingVolume: this._boundingSphereWC
}),
this._sectorLineVA = void 0,
this._sectorSegmentLineCommand = new l({
owner: this,
primitiveType: s.LINES,
boundingVolume: this._boundingSphereWC
}),
this._sectorSegmentLineVA = void 0,
this._domeFrontCommand = new l({
owner: this,
primitiveType: s.TRIANGLES,
boundingVolume: this._boundingSphereWC
}),
this._domeBackCommand = new l({
owner: this,
primitiveType: s.TRIANGLES,
boundingVolume: this._boundingSphereWC
}),
this._domeVA = void 0,
this._domeLineCommand = new l({
owner: this,
primitiveType: s.LINES,
boundingVolume: this._boundingSphereWC
}),
this._domeLineVA = void 0,
this._scanPlaneFrontCommand = new l({
owner: this,
primitiveType: s.TRIANGLES,
boundingVolume: this._boundingSphereWC
}),
this._scanPlaneBackCommand = new l({
owner: this,
primitiveType: s.TRIANGLES,
boundingVolume: this._boundingSphereWC
}),
this._scanRadialCommand = void 0,
this._colorCommands = [],
this._frontFaceRS = void 0,
this._backFaceRS = void 0,
this._sp = void 0,
this._uniforms = {
u_type: function () {
return 0
},
u_xHalfAngle: function () {
return n.xHalfAngle
},
u_yHalfAngle: function () {
return n.yHalfAngle
},
u_radius: function () {
return n.radius
},
u_showThroughEllipsoid: function () {
return n.showThroughEllipsoid
},
u_showIntersection: function () {
return n.showIntersection
},
u_intersectionColor: function () {
return n.intersectionColor
},
u_intersectionWidth: function () {
return n.intersectionWidth
},
u_normalDirection: function () {
return 1
},
u_lineColor: function () {
return n.lineColor
}
},
this._scanUniforms = {
u_xHalfAngle: function () {
return n._scanePlaneXHalfAngle
},
u_yHalfAngle: function () {
return n._scanePlaneYHalfAngle
},
u_radius: function () {
return n.radius
},
u_color: function () {
return n.scanPlaneColor
},
u_showThroughEllipsoid: function () {
return n.showThroughEllipsoid
},
u_showIntersection: function () {
return n.showIntersection
},
u_intersectionColor: function () {
return n.intersectionColor
},
u_intersectionWidth: function () {
return n.intersectionWidth
},
u_normalDirection: function () {
return 1
},
u_lineColor: function () {
return n.lineColor
}
}
}
c.prototype.update = function (e) {
var n = e.mode;
if (this.show && n === U.SCENE3D) {
var t = !1
, o = !1
, i = !1
, r = this.xHalfAngle
, a = this.yHalfAngle;
if (r < 0 || a < 0)
throw new O("halfAngle must be greater than or equal to zero.");
if (0 != r && 0 != a) {
this._xHalfAngle === r && this._yHalfAngle === a || (this._xHalfAngle = r,
this._yHalfAngle = a,
t = !0);
var s = this.radius;
if (s < 0)
throw new O("this.radius must be greater than or equal to zero.");
var l = !1;
this._radius !== s && (l = !0,
this._radius = s,
this._boundingSphere = new V(R.ZERO, this.radius)),
(!H.equals(this.modelMatrix, this._modelMatrix) || l) && (H.clone(this.modelMatrix, this._modelMatrix),
H.multiplyByUniformScale(this.modelMatrix, this.radius, this._computedModelMatrix),
V.transform(this._boundingSphere, this.modelMatrix, this._boundingSphereWC));
var u = this.showThroughEllipsoid;
this._showThroughEllipsoid !== this.showThroughEllipsoid && (this._showThroughEllipsoid = u,
o = !0);
var c = this.material;
this._material !== c && (this._material = c,
i = o = !0);
var d = c.isTranslucent();
if (this._translucent !== d && (this._translucent = d,
o = !0),
this.showScanPlane) {
var h = e.time
, f = J.secondsDifference(h, this._time);
f < 0 && (this._time = J.clone(h, this._time));
var m, p = Math.max(f % this.scanPlaneRate / this.scanPlaneRate, 0);
if ("horizontal" == this.scanPlaneMode) {
var _ = K(m = 2 * a * p - a)
, v = $(r)
, g = ee(_ * v);
this._scanePlaneXHalfAngle = g,
this._scanePlaneYHalfAngle = m,
T.default.Matrix3.fromRotationX(this._scanePlaneYHalfAngle, te)
} else {
m = 2 * r * p - r;
var w = $(a)
, S = K(m)
, C = ee(S * w);
this._scanePlaneXHalfAngle = m,
this._scanePlaneYHalfAngle = C,
T.default.Matrix3.fromRotationY(this._scanePlaneXHalfAngle, te)
}
T.default.Matrix4.multiplyByMatrix3(this.modelMatrix, te, this._computedScanPlaneModelMatrix),
H.multiplyByUniformScale(this._computedScanPlaneModelMatrix, this.radius, this._computedScanPlaneModelMatrix)
}
t && function (e, n) {
var t = n.context
, o = ie(e, e.xHalfAngle, e.yHalfAngle)
, i = function (e, n) {
var t = e.xHalfAngle
, o = e.yHalfAngle
, i = n.zoy
, r = n.zox
, a = []
, s = Q.fromRotationY(t, te);
a.push(i.map(function (e) {
return Q.multiplyByVector(s, e, new T.default.Cartesian3)
}));
var s = Q.fromRotationX(-o, te);
a.push(r.map(function (e) {
return Q.multiplyByVector(s, e, new T.default.Cartesian3)
}).reverse());
var s = Q.fromRotationY(-t, te);
a.push(i.map(function (e) {
return Q.multiplyByVector(s, e, new T.default.Cartesian3)
}).reverse());
var s = Q.fromRotationX(o, te);
return a.push(r.map(function (e) {
return Q.multiplyByVector(s, e, new T.default.Cartesian3)
})),
a
}(e, o);
e.showLateralSurfaces && (e._sectorVA = function (e, n) {
for (var t = Array.prototype.concat.apply([], n).length - n.length, o = new Float32Array(18 * t), i = 0, r = 0, a = n.length; r < a; r++)
for (var s = n[r], l = R.normalize(R.cross(s[0], s[s.length - 1], oe), oe), u = 0, t = s.length - 1; u < t; u++)
o[i++] = 0,
o[i++] = 0,
o[i++] = 0,
o[i++] = -l.x,
o[i++] = -l.y,
o[i++] = -l.z,
o[i++] = s[u].x,
o[i++] = s[u].y,
o[i++] = s[u].z,
o[i++] = -l.x,
o[i++] = -l.y,
o[i++] = -l.z,
o[i++] = s[u + 1].x,
o[i++] = s[u + 1].y,
o[i++] = s[u + 1].z,
o[i++] = -l.x,
o[i++] = -l.y,
o[i++] = -l.z;
var c = W.createVertexBuffer({
context: e,
typedArray: o,
usage: F.STATIC_DRAW
})
, d = 6 * Float32Array.BYTES_PER_ELEMENT
, h = [{
index: ne.position,
vertexBuffer: c,
componentsPerAttribute: 3,
componentDatatype: I.FLOAT,
offsetInBytes: 0,
strideInBytes: d
}, {
index: ne.normal,
vertexBuffer: c,
componentsPerAttribute: 3,
componentDatatype: I.FLOAT,
offsetInBytes: 3 * Float32Array.BYTES_PER_ELEMENT,
strideInBytes: d
}];
return new G({
context: e,
attributes: h
})
}(t, i));
e.showSectorLines && (e._sectorLineVA = function (e, n) {
for (var t = n.length, o = new Float32Array(9 * t), i = 0, r = 0, a = n.length; r < a; r++) {
var s = n[r];
o[i++] = 0,
o[i++] = 0,
o[i++] = 0,
o[i++] = s[0].x,
o[i++] = s[0].y,
o[i++] = s[0].z
}
var l = W.createVertexBuffer({
context: e,
typedArray: o,
usage: F.STATIC_DRAW
})
, u = 3 * Float32Array.BYTES_PER_ELEMENT
, c = [{
index: ne.position,
vertexBuffer: l,
componentsPerAttribute: 3,
componentDatatype: I.FLOAT,
offsetInBytes: 0,
strideInBytes: u
}];
return new G({
context: e,
attributes: c
})
}(t, i));
e.showSectorSegmentLines && (e._sectorSegmentLineVA = function (e, n) {
for (var t = Array.prototype.concat.apply([], n).length - n.length, o = new Float32Array(9 * t), i = 0, r = 0, a = n.length; r < a; r++)
for (var s = n[r], l = 0, t = s.length - 1; l < t; l++)
o[i++] = s[l].x,
o[i++] = s[l].y,
o[i++] = s[l].z,
o[i++] = s[l + 1].x,
o[i++] = s[l + 1].y,
o[i++] = s[l + 1].z;
var u = W.createVertexBuffer({
context: e,
typedArray: o,
usage: F.STATIC_DRAW
})
, c = 3 * Float32Array.BYTES_PER_ELEMENT
, d = [{
index: ne.position,
vertexBuffer: u,
componentsPerAttribute: 3,
componentDatatype: I.FLOAT,
offsetInBytes: 0,
strideInBytes: c
}];
return new G({
context: e,
attributes: d
})
}(t, i));
e.showDomeSurfaces && (e._domeVA = function (e) {
var n = T.default.EllipsoidGeometry.createGeometry(new T.default.EllipsoidGeometry({
vertexFormat: j.POSITION_ONLY,
stackPartitions: 32,
slicePartitions: 32
}));
return G.fromGeometry({
context: e,
geometry: n,
attributeLocations: ne,
bufferUsage: F.STATIC_DRAW,
interleave: !1
})
}(t));
e.showDomeLines && (e._domeLineVA = function (e) {
var n = T.default.EllipsoidOutlineGeometry.createGeometry(new T.default.EllipsoidOutlineGeometry({
vertexFormat: j.POSITION_ONLY,
stackPartitions: 32,
slicePartitions: 32
}));
return G.fromGeometry({
context: e,
geometry: n,
attributeLocations: ne,
bufferUsage: F.STATIC_DRAW,
interleave: !1
})
}(t));
if (e.showScanPlane)
if ("horizontal" == e.scanPlaneMode) {
var r = ie(e, Z.PI_OVER_TWO, 0);
e._scanPlaneVA = re(t, r.zox)
} else {
var r = ie(e, 0, Z.PI_OVER_TWO);
e._scanPlaneVA = re(t, r.zoy)
}
}(this, e),
o && function (e, n, t) {
t ? (e._frontFaceRS = N.fromCache({
depthTest: {
enabled: !n
},
depthMask: !1,
blending: X.ALPHA_BLEND,
cull: {
enabled: !0,
face: q.BACK
}
}),
e._backFaceRS = N.fromCache({
depthTest: {
enabled: !n
},
depthMask: !1,
blending: X.ALPHA_BLEND,
cull: {
enabled: !0,
face: q.FRONT
}
}),
e._pickRS = N.fromCache({
depthTest: {
enabled: !n
},
depthMask: !1,
blending: X.ALPHA_BLEND
})) : (e._frontFaceRS = N.fromCache({
depthTest: {
enabled: !n
},
depthMask: !0
}),
e._pickRS = N.fromCache({
depthTest: {
enabled: !0
},
depthMask: !0
}))
}(this, u, d),
i && function (e, n, t) {
(function (e, n, t) {
var o = n.context
, i = b.default
, r = new Y({
sources: [z.default, t.shaderSource, L.default]
});
e._sp = k.replaceCache({
context: o,
shaderProgram: e._sp,
vertexShaderSource: i,
fragmentShaderSource: r,
attributeLocations: ne
});
var a = new Y({
sources: [z.default, t.shaderSource, L.default],
pickColorQualifier: "uniform"
});
e._pickSP = k.replaceCache({
context: o,
shaderProgram: e._pickSP,
vertexShaderSource: i,
fragmentShaderSource: a,
attributeLocations: ne
})
}
)(e, n, t),
e.showScanPlane && function (e, n, t) {
var o = n.context
, i = b.default
, r = new Y({
sources: [z.default, t.shaderSource, D.default]
});
e._scanePlaneSP = k.replaceCache({
context: o,
shaderProgram: e._scanePlaneSP,
vertexShaderSource: i,
fragmentShaderSource: r,
attributeLocations: ne
})
}(e, n, t)
}(this, e, c),
(o || i) && function (e, n) {
e._colorCommands.length = 0;
var t = n ? B.TRANSLUCENT : B.OPAQUE;
e.showLateralSurfaces && ae(e, e._sectorFrontCommand, e._sectorBackCommand, e._frontFaceRS, e._backFaceRS, e._sp, e._sectorVA, e._uniforms, e._computedModelMatrix, n, t);
e.showSectorLines && ae(e, e._sectorLineCommand, void 0, e._frontFaceRS, e._backFaceRS, e._sp, e._sectorLineVA, e._uniforms, e._computedModelMatrix, n, t, !0);
e.showSectorSegmentLines && ae(e, e._sectorSegmentLineCommand, void 0, e._frontFaceRS, e._backFaceRS, e._sp, e._sectorSegmentLineVA, e._uniforms, e._computedModelMatrix, n, t, !0);
e.showDomeSurfaces && ae(e, e._domeFrontCommand, e._domeBackCommand, e._frontFaceRS, e._backFaceRS, e._sp, e._domeVA, e._uniforms, e._computedModelMatrix, n, t);
e.showDomeLines && ae(e, e._domeLineCommand, void 0, e._frontFaceRS, e._backFaceRS, e._sp, e._domeLineVA, e._uniforms, e._computedModelMatrix, n, t, !0);
e.showScanPlane && ae(e, e._scanPlaneFrontCommand, e._scanPlaneBackCommand, e._frontFaceRS, e._backFaceRS, e._scanePlaneSP, e._scanPlaneVA, e._scanUniforms, e._computedScanPlaneModelMatrix, n, t)
}(this, d);
var y = e.commandList
, x = e.passes
, E = this._colorCommands;
if (x.render)
for (var P = 0, A = E.length; P < A; P++) {
var M = E[P];
y.push(M)
}
}
}
}
;
var te = new Q
, oe = new R;
function ie(e, n, t) {
for (var o = e.slice, i = K(t), r = $(t), a = K(n), s = $(n), l = ee(a * r), u = ee(i * s), c = [], d = 0; d < o; d++) {
var h = 2 * l * d / (o - 1) - l;
c.push(new R(0, m(h), K(h)))
}
var f = [];
for (d = 0; d < o; d++) {
h = 2 * u * d / (o - 1) - u;
f.push(new R(m(h), 0, K(h)))
}
return {
zoy: c,
zox: f
}
}
function re(e, n) {
for (var t = n.length - 1, o = new Float32Array(9 * t), i = 0, r = 0; r < t; r++)
o[i++] = 0,
o[i++] = 0,
o[i++] = 0,
o[i++] = n[r].x,
o[i++] = n[r].y,
o[i++] = n[r].z,
o[i++] = n[r + 1].x,
o[i++] = n[r + 1].y,
o[i++] = n[r + 1].z;
var a = W.createVertexBuffer({
context: e,
typedArray: o,
usage: F.STATIC_DRAW
})
, s = 3 * Float32Array.BYTES_PER_ELEMENT
, l = [{
index: ne.position,
vertexBuffer: a,
componentsPerAttribute: 3,
componentDatatype: I.FLOAT,
offsetInBytes: 0,
strideInBytes: s
}];
return new G({
context: e,
attributes: l
})
}
function ae(e, n, t, o, i, r, a, s, l, u, c, d) {
u && t && (t.vertexArray = a,
t.renderState = i,
t.shaderProgram = r,
t.uniformMap = h(s, e._material._uniforms),
t.uniformMap.u_normalDirection = function () {
return -1
}
,
t.pass = c,
t.modelMatrix = l,
e._colorCommands.push(t)),
n.vertexArray = a,
n.renderState = o,
n.shaderProgram = r,
n.uniformMap = h(s, e._material._uniforms),
d && (n.uniformMap.u_type = function () {
return 1
}
),
n.pass = c,
n.modelMatrix = l,
e._colorCommands.push(n)
}
n.RectangularSensorPrimitive = c
}
, function (e, n, t) {
"use strict";
var o, i = t(0), r = (o = i) && o.__esModule ? o : {
default: o
}, a = t(1), s = t(7), l = t(8);
r.default.RectangularSensorPrimitive = a.RectangularSensorPrimitive,
r.default.RectangularSensorGraphics = s.RectangularSensorGraphics,
r.default.RectangularSensorVisualizer = l.RectangularSensorVisualizer;
var u = r.default.DataSourceDisplay
, c = u.defaultVisualizersCallback;
u.defaultVisualizersCallback = function (e, n, t) {
var o = t.entities;
return c(e, n, t).concat([new l.RectangularSensorVisualizer(e, o)])
}
}
, function (e, n) {
e.exports = "attribute vec4 position;\r\nattribute vec3 normal;\r\n\r\nvarying vec3 v_position;\r\nvarying vec3 v_positionWC;\r\nvarying vec3 v_positionEC;\r\nvarying vec3 v_normalEC;\r\n\r\nvoid main()\r\n{\r\n gl_Position = czm_modelViewProjection * position;\r\n v_position = vec3(position);\r\n v_positionWC = (czm_model * position).xyz;\r\n v_positionEC = (czm_modelView * position).xyz;\r\n v_normalEC = czm_normal * normal;\r\n}"
}
, function (e, n) {
e.exports = '#ifdef GL_OES_standard_derivatives\r\n #extension GL_OES_standard_derivatives : enable\r\n#endif\r\n\r\nuniform bool u_showIntersection;\r\nuniform bool u_showThroughEllipsoid;\r\n\r\nuniform float u_radius;\r\nuniform float u_xHalfAngle;\r\nuniform float u_yHalfAngle;\r\nuniform float u_normalDirection;\r\nuniform float u_type;\r\n\r\nvarying vec3 v_position;\r\nvarying vec3 v_positionWC;\r\nvarying vec3 v_positionEC;\r\nvarying vec3 v_normalEC;\r\n\r\nvec4 getColor(float sensorRadius, vec3 pointEC)\r\n{\r\n czm_materialInput materialInput;\r\n\r\n vec3 pointMC = (czm_inverseModelView * vec4(pointEC, 1.0)).xyz;\r\n materialInput.st = sensor2dTextureCoordinates(sensorRadius, pointMC);\r\n materialInput.str = pointMC / sensorRadius;\r\n\r\n vec3 positionToEyeEC = -v_positionEC;\r\n materialInput.positionToEyeEC = positionToEyeEC;\r\n\r\n vec3 normalEC = normalize(v_normalEC);\r\n materialInput.normalEC = u_normalDirection * normalEC;\r\n\r\n czm_material material = czm_getMaterial(materialInput);\r\n\r\n return mix(czm_phong(normalize(positionToEyeEC), material), vec4(material.diffuse, material.alpha), 0.4);\r\n\r\n}\r\n\r\nbool isOnBoundary(float value, float epsilon)\r\n{\r\n float width = getIntersectionWidth();\r\n float tolerance = width * epsilon;\r\n\r\n#ifdef GL_OES_standard_derivatives\r\n float delta = max(abs(dFdx(value)), abs(dFdy(value)));\r\n float pixels = width * delta;\r\n float temp = abs(value);\r\n // There are a couple things going on here.\r\n // First we test the value at the current fragment to see if it is within the tolerance.\r\n // We also want to check if the value of an adjacent pixel is within the tolerance,\r\n // but we don\'t want to admit points that are obviously not on the surface.\r\n // For example, if we are looking for "value" to be close to 0, but value is 1 and the adjacent value is 2,\r\n // then the delta would be 1 and "temp - delta" would be "1 - 1" which is zero even though neither of\r\n // the points is close to zero.\r\n return temp < tolerance && temp < pixels || (delta < 10.0 * tolerance && temp - delta < tolerance && temp < pixels);\r\n#else\r\n return abs(value) < tolerance;\r\n#endif\r\n}\r\n\r\nvec4 shade(bool isOnBoundary)\r\n{\r\n if (u_showIntersection && isOnBoundary)\r\n {\r\n return getIntersectionColor();\r\n }\r\n if(u_type == 1.0){\r\n return getLineColor();\r\n }\r\n return getColor(u_radius, v_positionEC);\r\n}\r\n\r\nfloat ellipsoidSurfaceFunction(czm_ellipsoid ellipsoid, vec3 point)\r\n{\r\n vec3 scaled = ellipsoid.inverseRadii * point;\r\n return dot(scaled, scaled) - 1.0;\r\n}\r\n\r\nvoid main()\r\n{\r\n vec3 sensorVertexWC = czm_model[3].xyz; // (0.0, 0.0, 0.0) in model coordinates\r\n vec3 sensorVertexEC = czm_modelView[3].xyz; // (0.0, 0.0, 0.0) in model coordinates\r\n\r\n //vec3 pixDir = normalize(v_position);\r\n float positionX = v_position.x;\r\n float positionY = v_position.y;\r\n float positionZ = v_position.z;\r\n\r\n vec3 zDir = vec3(0.0, 0.0, 1.0);\r\n vec3 lineX = vec3(positionX, 0 ,positionZ);\r\n vec3 lineY = vec3(0, positionY, positionZ);\r\n float resX = dot(normalize(lineX), zDir);\r\n if(resX < cos(u_xHalfAngle)-0.00001){\r\n discard;\r\n }\r\n float resY = dot(normalize(lineY), zDir);\r\n if(resY < cos(u_yHalfAngle)-0.00001){\r\n discard;\r\n }\r\n\r\n\r\n czm_ellipsoid ellipsoid = czm_getWgs84EllipsoidEC();\r\n float ellipsoidValue = ellipsoidSurfaceFunction(ellipsoid, v_positionWC);\r\n\r\n // Occluded by the ellipsoid?\r\n\tif (!u_showThroughEllipsoid)\r\n\t{\r\n\t // Discard if in the ellipsoid\r\n\t // PERFORMANCE_IDEA: A coarse check for ellipsoid intersection could be done on the CPU first.\r\n\t if (ellipsoidValue < 0.0)\r\n\t {\r\n discard;\r\n\t }\r\n\r\n\t // Discard if in the sensor\'s shadow\r\n\t if (inSensorShadow(sensorVertexWC, ellipsoid, v_positionWC))\r\n\t {\r\n\t
}
, function (e, n) {
e.exports = "uniform vec4 u_intersectionColor;\nuniform float u_intersectionWidth;\nuniform vec4 u_lineColor;\n\nbool inSensorShadow(vec3 coneVertexWC, czm_ellipsoid ellipsoidEC, vec3 pointWC)\n{\n // Diagonal matrix from the unscaled ellipsoid space to the scaled space. \n vec3 D = ellipsoidEC.inverseRadii;\n\n // Sensor vertex in the scaled ellipsoid space\n vec3 q = D * coneVertexWC;\n float qMagnitudeSquared = dot(q, q);\n float test = qMagnitudeSquared - 1.0;\n \n // Sensor vertex to fragment vector in the ellipsoid's scaled space\n vec3 temp = D * pointWC - q;\n float d = dot(temp, q);\n \n // Behind silhouette plane and inside silhouette cone\n return (d < -test) && (d / length(temp) < -sqrt(test));\n}\n\n///////////////////////////////////////////////////////////////////////////////\n\nvec4 getLineColor()\n{\n return u_lineColor;\n}\n\nvec4 getIntersectionColor()\n{\n return u_intersectionColor;\n}\n\nfloat getIntersectionWidth()\n{\n return u_intersectionWidth;\n}\n\nvec2 sensor2dTextureCoordinates(float sensorRadius, vec3 pointMC)\n{\n // (s, t) both in the range [0, 1]\n float t = pointMC.z / sensorRadius;\n float s = 1.0 + (atan(pointMC.y, pointMC.x) / czm_twoPi);\n s = s - floor(s);\n \n return vec2(s, t);\n}\n"
}
, function (e, n) {
e.exports = '#ifdef GL_OES_standard_derivatives\r\n #extension GL_OES_standard_derivatives : enable\r\n#endif\r\n\r\nuniform bool u_showIntersection;\r\nuniform bool u_showThroughEllipsoid;\r\n\r\nuniform float u_radius;\r\nuniform float u_xHalfAngle;\r\nuniform float u_yHalfAngle;\r\nuniform float u_normalDirection;\r\nuniform vec4 u_color;\r\n\r\nvarying vec3 v_position;\r\nvarying vec3 v_positionWC;\r\nvarying vec3 v_positionEC;\r\nvarying vec3 v_normalEC;\r\n\r\nvec4 getColor(float sensorRadius, vec3 pointEC)\r\n{\r\n czm_materialInput materialInput;\r\n\r\n vec3 pointMC = (czm_inverseModelView * vec4(pointEC, 1.0)).xyz;\r\n materialInput.st = sensor2dTextureCoordinates(sensorRadius, pointMC);\r\n materialInput.str = pointMC / sensorRadius;\r\n\r\n vec3 positionToEyeEC = -v_positionEC;\r\n materialInput.positionToEyeEC = positionToEyeEC;\r\n\r\n vec3 normalEC = normalize(v_normalEC);\r\n materialInput.normalEC = u_normalDirection * normalEC;\r\n\r\n czm_material material = czm_getMaterial(materialInput);\r\n\r\n material.diffuse = u_color.rgb;\r\n material.alpha = u_color.a;\r\n\r\n return mix(czm_phong(normalize(positionToEyeEC), material), vec4(material.diffuse, material.alpha), 0.4);\r\n\r\n}\r\n\r\nbool isOnBoundary(float value, float epsilon)\r\n{\r\n float width = getIntersectionWidth();\r\n float tolerance = width * epsilon;\r\n\r\n#ifdef GL_OES_standard_derivatives\r\n float delta = max(abs(dFdx(value)), abs(dFdy(value)));\r\n float pixels = width * delta;\r\n float temp = abs(value);\r\n // There are a couple things going on here.\r\n // First we test the value at the current fragment to see if it is within the tolerance.\r\n // We also want to check if the value of an adjacent pixel is within the tolerance,\r\n // but we don\'t want to admit points that are obviously not on the surface.\r\n // For example, if we are looking for "value" to be close to 0, but value is 1 and the adjacent value is 2,\r\n // then the delta would be 1 and "temp - delta" would be "1 - 1" which is zero even though neither of\r\n // the points is close to zero.\r\n return temp < tolerance && temp < pixels || (delta < 10.0 * tolerance && temp - delta < tolerance && temp < pixels);\r\n#else\r\n return abs(value) < tolerance;\r\n#endif\r\n}\r\n\r\nvec4 shade(bool isOnBoundary)\r\n{\r\n if (u_showIntersection && isOnBoundary)\r\n {\r\n return getIntersectionColor();\r\n }\r\n return getColor(u_radius, v_positionEC);\r\n}\r\n\r\nfloat ellipsoidSurfaceFunction(czm_ellipsoid ellipsoid, vec3 point)\r\n{\r\n vec3 scaled = ellipsoid.inverseRadii * point;\r\n return dot(scaled, scaled) - 1.0;\r\n}\r\n\r\nvoid main()\r\n{\r\n vec3 sensorVertexWC = czm_model[3].xyz; // (0.0, 0.0, 0.0) in model coordinates\r\n vec3 sensorVertexEC = czm_modelView[3].xyz; // (0.0, 0.0, 0.0) in model coordinates\r\n\r\n //vec3 pixDir = normalize(v_position);\r\n float positionX = v_position.x;\r\n float positionY = v_position.y;\r\n float positionZ = v_position.z;\r\n\r\n vec3 zDir = vec3(0.0, 0.0, 1.0);\r\n vec3 lineX = vec3(positionX, 0 ,positionZ);\r\n vec3 lineY = vec3(0, positionY, positionZ);\r\n float resX = dot(normalize(lineX), zDir);\r\n if(resX < cos(u_xHalfAngle) - 0.0001){\r\n discard;\r\n }\r\n float resY = dot(normalize(lineY), zDir);\r\n if(resY < cos(u_yHalfAngle)- 0.0001){\r\n discard;\r\n }\r\n\r\n\r\n czm_ellipsoid ellipsoid = czm_getWgs84EllipsoidEC();\r\n float ellipsoidValue = ellipsoidSurfaceFunction(ellipsoid, v_positionWC);\r\n\r\n // Occluded by the ellipsoid?\r\n\tif (!u_showThroughEllipsoid)\r\n\t{\r\n\t // Discard if in the ellipsoid\r\n\t // PERFORMANCE_IDEA: A coarse check for ellipsoid intersection could be done on the CPU first.\r\n\t if (ellipsoidValue < 0.0)\r\n\t {\r\n discard;\r\n\t }\r\n\r\n\t // Discard if in the sensor\'s shadow\r\n\t if (inSensorShadow(sensorVertexWC, ellipsoid, v_positionWC))\r\n\t {
}
, function (e, n, t) {
"use strict";
Object.defineProperty(n, "__esModule", {
value: !0
}),
n.RectangularSensorGraphics = void 0;
var o, i = t(0), r = (o = i) && o.__esModule ? o : {
default: o
};
var a = r.default.defaultValue
, s = r.default.defined
, l = r.default.defineProperties
, u = r.default.DeveloperError
, c = r.default.Event
, d = r.default.createMaterialPropertyDescriptor
, h = r.default.createPropertyDescriptor;
function f(e) {
this._show = void 0,
this._radius = void 0,
this._xHalfAngle = void 0,
this._yHalfAngle = void 0,
this._lineColor = void 0,
this._showSectorLines = void 0,
this._showSectorSegmentLines = void 0,
this._showLateralSurfaces = void 0,
this._material = void 0,
this._showDomeSurfaces = void 0,
this._showDomeLines = void 0,
this._showIntersection = void 0,
this._intersectionColor = void 0,
this._intersectionWidth = void 0,
this._showThroughEllipsoid = void 0,
this._gaze = void 0,
this._showScanPlane = void 0,
this._scanPlaneColor = void 0,
this._scanPlaneMode = void 0,
this._scanPlaneRate = void 0,
this._definitionChanged = new c,
this.merge(a(e, a.EMPTY_OBJECT))
}
l(f.prototype, {
definitionChanged: {
get: function () {
return this._definitionChanged
}
},
show: h("show"),
radius: h("radius"),
xHalfAngle: h("xHalfAngle"),
yHalfAngle: h("yHalfAngle"),
lineColor: h("lineColor"),
showSectorLines: h("showSectorLines"),
showSectorSegmentLines: h("showSectorSegmentLines"),
showLateralSurfaces: h("showLateralSurfaces"),
material: d("material"),
showDomeSurfaces: h("showDomeSurfaces"),
showDomeLines: h("showDomeLines "),
showIntersection: h("showIntersection"),
intersectionColor: h("intersectionColor"),
intersectionWidth: h("intersectionWidth"),
showThroughEllipsoid: h("showThroughEllipsoid"),
gaze: h("gaze"),
showScanPlane: h("showScanPlane"),
scanPlaneColor: h("scanPlaneColor"),
scanPlaneMode: h("scanPlaneMode"),
scanPlaneRate: h("scanPlaneRate")
}),
f.prototype.clone = function (e) {
return s(e) || (e = new f),
e.show = this.show,
e.radius = this.radius,
e.xHalfAngle = this.xHalfAngle,
e.yHalfAngle = this.yHalfAngle,
e.lineColor = this.lineColor,
e.showSectorLines = this.showSectorLines,
e.showSectorSegmentLines = this.showSectorSegmentLines,
e.showLateralSurfaces = this.showLateralSurfaces,
e.material = this.material,
e.showDomeSurfaces = this.showDomeSurfaces,
e.showDomeLines = this.showDomeLines,
e.showIntersection = this.showIntersection,
e.intersectionColor = this.intersectionColor,
e.intersectionWidth = this.intersectionWidth,
e.showThroughEllipsoid = this.showThroughEllipsoid,
e.gaze = this.gaze,
e.showScanPlane = this.showScanPlane,
e.scanPlaneColor = this.scanPlaneColor,
e.scanPlaneMode = this.scanPlaneMode,
e.scanPlaneRate = this.scanPlaneRate,
e
}
,
f.prototype.merge = function (e) {
if (!s(e))
throw new u("source is required.");
this.show = a(this.show, e.show),
this.radius = a(this.radius, e.radius),
this.xHalfAngle = a(this.xHalfAngle, e.xHalfAngle),
this.yHalfAngle = a(this.yHalfAngle, e.yHalfAngle),
this.lineColor = a(this.lineColor, e.lineColor),
this.showSectorLines = a(this.showSectorLines, e.showSectorLines),
this.showSectorSegmentLines = a(this.showSectorSegmentLines, e.showSectorSegmentLines),
this.showLateralSurfaces = a(this.showLateralSurfaces, e.showLateralSurfaces),
this.material = a(this.material, e.material),
this.showDomeSurfaces = a(this.showDomeSurfaces, e.showDomeSurfaces),
this.showDomeLines = a(this.showDomeLines, e.showDomeLines),
this.showIntersection = a(this.showIntersection, e.showIntersection),
this.intersectionColor = a(this.intersectionColor, e.intersectionColor),
this.intersectionWidth = a(this.intersectionWidth, e.intersectionWidth),
this.showThroughEllipsoid = a(this.showThroughEllipsoid, e.showThroughEllipsoid),
this.gaze = a(this.gaze, e.gaze),
this.showScanPlane = a(this.showScanPlane, e.showScanPlane),
this.scanPlaneColor = a(this.scanPlaneColor, e.scanPlaneColor),
this.scanPlaneMode = a(this.scanPlaneMode, e.scanPlaneMode),
this.scanPlaneRate = a(this.scanPlaneRate, e.scanPlaneRate)
}
,
n.RectangularSensorGraphics = f
}
, function (e, n, t) {
"use strict";
Object.defineProperty(n, "__esModule", {
value: !0
}),
n.RectangularSensorVisualizer = void 0;
var o, i = t(0), C = (o = i) && o.__esModule ? o : {
default: o
}, y = t(1), u = t(9);
var r = C.default.AssociativeArray
, x = C.default.Cartesian3
, E = C.default.Color
, P = C.default.defined
, a = C.default.destroyObject
, A = C.default.DeveloperError
, M = C.default.Matrix3
, T = C.default.Matrix4
, b = C.default.Quaternion
, L = C.default.MaterialProperty
, z = C.default.Property
, D = new M
, V = (new T,
new x)
, R = new x
, I = new b
, O = new x
, H = new b
, s = function e(n, t) {
if (!P(n))
throw new A("scene is required.");
if (!P(t))
throw new A("entityCollection is required.");
t.collectionChanged.addEventListener(e.prototype._onCollectionChanged, this),
this._scene = n,
this._primitives = n.primitives,
this._entityCollection = t,
this._hash = {},
this._entitiesToVisualize = new r,
this._onCollectionChanged(t, t.values, [], [])
};
s.prototype.update = function (e) {
if (!P(e))
throw new A("time is required.");
for (var n = this._entitiesToVisualize.values, t = this._hash, o = this._primitives, i = 0, r = n.length; i < r; i++) {
var a, s, l, u, c = n[i], d = c._rectangularSensor, h = t[c.id], f = c.isShowing && c.isAvailable(e) && z.getValueOrDefault(d._show, e, !0);
if (f && (a = z.getValueOrUndefined(c._position, e, V),
S = z.getValueOrUndefined(c._orientation, e, I),
s = z.getValueOrUndefined(d._radius, e),
l = z.getValueOrUndefined(d._xHalfAngle, e),
u = z.getValueOrUndefined(d._yHalfAngle, e),
f = P(a) && P(l) && P(u)),
f) {
var m = P(h) ? h.primitive : void 0;
P(m) || ((m = new y.RectangularSensorPrimitive).id = c,
o.add(m),
h = {
primitive: m,
position: void 0,
orientation: void 0
},
t[c.id] = h);
var p = z.getValueOrUndefined(d._gaze, e);
if (P(p)) {
var _ = z.getValueOrUndefined(p._position, e, R);
if (!P(a) || !P(_))
continue;
var v = x.subtract(a, _, O)
, g = x.angleBetween(C.default.Cartesian3.UNIT_Z, v)
, w = x.cross(C.default.Cartesian3.UNIT_Z, v, O)
, S = b.fromAxisAngle(w, g - Math.PI, H);
s = x.distance(a, _),
m.modelMatrix = T.fromRotationTranslation(M.fromQuaternion(S, D), a, m.modelMatrix)
} else
x.equals(a, h.position) && b.equals(S, h.orientation) || (P(S) ? (m.modelMatrix = T.fromRotationTranslation(M.fromQuaternion(S, D), a, m.modelMatrix),
h.position = x.clone(a, h.position),
h.orientation = b.clone(S, h.orientation)) : (m.modelMatrix = C.default.Transforms.eastNorthUpToFixedFrame(a),
h.position = x.clone(a, h.position)));
m.show = !0,
m.gaze = p,
m.radius = s,
m.xHalfAngle = l,
m.yHalfAngle = u,
m.lineColor = z.getValueOrDefault(d._lineColor, e, E.WHITE),
m.showSectorLines = z.getValueOrDefault(d._showSectorLines, e, !0),
m.showSectorSegmentLines = z.getValueOrDefault(d._showSectorSegmentLines, e, !0),
m.showLateralSurfaces = z.getValueOrDefault(d._showLateralSurfaces, e, !0),
m.material = L.getValue(e, d._material, m.material),
m.showDomeSurfaces = z.getValueOrDefault(d._showDomeSurfaces, e, !0),
m.showDomeLines = z.getValueOrDefault(d._showDomeLines, e, !0),
m.showIntersection = z.getValueOrDefault(d._showIntersection, e, !0),
m.intersectionColor = z.getValueOrDefault(d._intersectionColor, e, E.WHITE),
m.intersectionWidth = z.getValueOrDefault(d._intersectionWidth, e, 1),
m.showThroughEllipsoid = z.getValueOrDefault(d._showThroughEllipsoid, e, !0),
m.scanPlaneMode = z.getValueOrDefault(d._scanPlaneMode, e),
m.scanPlaneColor = z.getValueOrDefault(d._scanPlaneColor, e, E.WHITE),
m.showScanPlane = z.getValueOrDefault(d._showScanPlane, e, !0),
m.scanPlaneRate = z.getValueOrDefault(d._scanPlaneRate, e, 1)
} else
P(h) && (h.primitive.show = !1)
}
return !0
}
,
s.prototype.isDestroyed = function () {
return !1
}
,
s.prototype.destroy = function () {
for (var e = this._entitiesToVisualize.values, n = this._hash, t = this._primitives, o = e.length - 1; -1 < o; o--)
(0,
u.removePrimitive)(e[o], n, t);
return a(this)
}
,
s.prototype._onCollectionChanged = function (e, n, t, o) {
var i, r, a = this._entitiesToVisualize, s = this._hash, l = this._primitives;
for (i = n.length - 1; -1 < i; i--)
r = n[i],
P(r._rectangularSensor) && P(r._position) && a.set(r.id, r);
for (i = o.length - 1; -1 < i; i--)
r = o[i],
P(r._rectangularSensor) && P(r._position) ? a.set(r.id, r) : ((0,
u.removePrimitive)(r, s, l),
a.remove(r.id));
for (i = t.length - 1; -1 < i; i--)
r = t[i],
(0,
u.removePrimitive)(r, s, l),
a.remove(r.id)
}
,
n.RectangularSensorVisualizer = s
}
, function (e, n, t) {
"use strict";
Object.defineProperty(n, "__esModule", {
value: !0
}),
n.removePrimitive = function (e, n, t) {
var o = n[e.id];
if (r(o)) {
var i = o.primitive;
try {
t.remove(i)
} catch (e) { }
i.isDestroyed && !i.isDestroyed() && i.destroy(),
delete n[e.id]
}
}
;
var o, i = t(0);
var r = ((o = i) && o.__esModule ? o : {
default: o
}).default.defined
}
])
});
/***
* 经纬网
* TileLonlatsImageryProvider.js
* ImageryProvider
*/
/**
* An {@link ImageryProvider} that draws a box around every rendered tile in the tiling scheme, and draws
* a label inside it indicating the X, Y, Level coordinates of the tile. This is mostly useful for
* debugging terrain and imagery rendering problems.
*
* @alias TileLonlatsImageryProvider
* @constructor
*
* @param {Object} [options] Object with the following properties:
* @param {TilingScheme} [options.tilingScheme=new GeographicTilingScheme()] The tiling scheme for which to draw tiles.
* @param {Ellipsoid} [options.ellipsoid] The ellipsoid. If the tilingScheme is specified,
* this parameter is ignored and the tiling scheme's ellipsoid is used instead. If neither
* parameter is specified, the WGS84 ellipsoid is used.
* @param {Color} [options.color=Color.YELLOW] The color to draw the tile box and label.
* @param {Number} [options.tileWidth=256] The width of the tile for level-of-detail selection purposes.
* @param {Number} [options.tileHeight=256] The height of the tile for level-of-detail selection purposes.
*/
var TileLonlatsImageryProvider = function TileLonlatsImageryProvider(options) {
options = Cesium.defaultValue(options, Cesium.defaultValue.EMPTY_OBJECT);
this._tilingScheme = Cesium.defined(options.tilingScheme) ? options.tilingScheme : new Cesium.GeographicTilingScheme({ ellipsoid: options.ellipsoid });
this._color = Cesium.defaultValue(options.color, Cesium.Color.YELLOW);
this._errorEvent = new Cesium.Event();
this._tileWidth = Cesium.defaultValue(options.tileWidth, 256);
this._tileHeight = Cesium.defaultValue(options.tileHeight, 256);
this._readyPromise = Cesium.when.resolve(true);
}
Cesium.defineProperties(TileLonlatsImageryProvider.prototype, {
/**
* Gets the proxy used by this provider.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Proxy}
* @readonly
*/
proxy : {
get : function() {
return undefined;
}
},
/**
* Gets the width of each tile, in pixels. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Number}
* @readonly
*/
tileWidth : {
get : function() {
return this._tileWidth;
}
},
/**
* Gets the height of each tile, in pixels. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Number}
* @readonly
*/
tileHeight: {
get : function() {
return this._tileHeight;
}
},
/**
* Gets the maximum level-of-detail that can be requested. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Number}
* @readonly
*/
maximumLevel : {
get : function() {
return undefined;
}
},
/**
* Gets the minimum level-of-detail that can be requested. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Number}
* @readonly
*/
minimumLevel : {
get : function() {
return undefined;
}
},
/**
* Gets the tiling scheme used by this provider. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {TilingScheme}
* @readonly
*/
tilingScheme : {
get : function() {
return this._tilingScheme;
}
},
/**
* Gets the rectangle, in radians, of the imagery provided by this instance. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Rectangle}
* @readonly
*/
rectangle : {
get : function() {
return this._tilingScheme.rectangle;
}
},
/**
* Gets the tile discard policy. If not undefined, the discard policy is responsible
* for filtering out "missing" tiles via its shouldDiscardImage function. If this function
* returns undefined, no tiles are filtered. This function should
* not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {TileDiscardPolicy}
* @readonly
*/
tileDiscardPolicy : {
get : function() {
return undefined;
}
},
/**
* Gets an event that is raised when the imagery provider encounters an asynchronous error. By subscribing
* to the event, you will be notified of the error and can potentially recover from it. Event listeners
* are passed an instance of {@link TileProviderError}.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Event}
* @readonly
*/
errorEvent : {
get : function() {
return this._errorEvent;
}
},
/**
* Gets a value indicating whether or not the provider is ready for use.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Boolean}
* @readonly
*/
ready : {
get : function() {
return true;
}
},
/**
* Gets a promise that resolves to true when the provider is ready for use.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Promise.<Boolean>}
* @readonly
*/
readyPromise : {
get : function() {
return this._readyPromise;
}
},
/**
* Gets the credit to display when this imagery provider is active. Typically this is used to credit
* the source of the imagery. This function should not be called before {@link TileCoordinatesImageryProvider#ready} returns true.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Credit}
* @readonly
*/
credit : {
get : function() {
return undefined;
}
},
/**
* Gets a value indicating whether or not the images provided by this imagery provider
* include an alpha channel. If this property is false, an alpha channel, if present, will
* be ignored. If this property is true, any images without an alpha channel will be treated
* as if their alpha is 1.0 everywhere. Setting this property to false reduces memory usage
* and texture upload time.
* @memberof TileCoordinatesImageryProvider.prototype
* @type {Boolean}
* @readonly
*/
hasAlphaChannel : {
get : function() {
return true;
}
}
});
/**
* Gets the credits to be displayed when a given tile is displayed.
*
* @param {Number} x The tile X coordinate.
* @param {Number} y The tile Y coordinate.
* @param {Number} level The tile level;
* @returns {Credit[]} The credits to be displayed when the tile is displayed.
*
* @exception {DeveloperError} <code>getTileCredits</code> must not be called before the imagery provider is ready.
*/
TileLonlatsImageryProvider.prototype.getTileCredits = function (x, y, level) {
return undefined;
};
/**
* Requests the image for a given tile. This function should
* not be called before {@link TileLonlatsImageryProvider#ready} returns true.
*
* @param {Number} x The tile X coordinate.
* @param {Number} y The tile Y coordinate.
* @param {Number} level The tile level.
* @param {Request} [request] The request object. Intended for internal use only.
* @returns {Promise.<Image|Canvas>|undefined} A promise for the image that will resolve when the image is available, or
* undefined if there are too many active requests to the server, and the request
* should be retried later. The resolved image may be either an
* Image or a Canvas DOM object.
*/
TileLonlatsImageryProvider.prototype.requestImage = function (x, y, level, request) {
var canvas = document.createElement('canvas');
canvas.width = 256;
canvas.height = 256;
var context = canvas.getContext('2d');
var cssColor = this._color.toCssColorString();
context.strokeStyle = cssColor;
context.lineWidth = 2;
context.strokeRect(1, 1, 255, 255);
/*
可以使用GeographicTilingScheme的tileXYToNativeRectangle接口获取对应关系不需要自己算
*/
var interval = 180.0 / Math.pow(2, level);
var lon = (x + 0.5) * interval-180;
var lat = 90 - (y + 0.5) * interval;
//var label = 'L-' + level + 'X-' + x + 'Y-' + y;
var labelLevel = '';
var labelLon = '';
var labelLat = '';
if (lon > 0) {
if (lat > 0) {
//label = 'L' + level + 'E' + lon + 'N' + lat;
labelLevel = 'L' + level;
labelLon = 'E' + lon;
labelLat = 'N' + lat;
} else {
//label = 'L' + level + 'E' + lon + 'S' + (-lat);
labelLevel = 'L' + level;
labelLon = 'E' + lon;
labelLat = 'N' + (-lat);
}
} else {
if (lat > 0) {
//label = 'L' + level + 'W' + (-lon) + 'N' + lat;
labelLevel = 'L' + level;
labelLon = 'E' + (-lon);
labelLat = 'N' + lat;
} else {
//label = 'L' + level + 'W' + (-lon) + 'S' + (-lat);
labelLevel = 'L' + level;
labelLon = 'E' + (-lon);
labelLat = 'N' + (-lat);
}
}
context.textAlign = 'center';
context.fillStyle = cssColor;
if (level > 10) {
context.font = 'bold 16px Arial';
context.fillText(labelLevel, 124, 100);
context.fillText(labelLon, 124, 124);
context.fillText(labelLat, 124, 148);
} else {
context.font = 'bold 25px Arial';
context.fillText(labelLevel, 124, 94);
context.fillText(labelLon, 124, 124);
context.fillText(labelLat, 124, 154);
}
//context.textAlign = 'center';
//context.fillStyle = 'black';//绘制阴影效果
//context.fillText(label, 127, 127);
//context.fillStyle = cssColor;
//context.fillText(label, 124, 24);
return canvas;
};
/**
* Picking features is not currently supported by this imagery provider, so this function simply returns
* undefined.
*
* @param {Number} x The tile X coordinate.
* @param {Number} y The tile Y coordinate.
* @param {Number} level The tile level.
* @param {Number} longitude The longitude at which to pick features.
* @param {Number} latitude The latitude at which to pick features.
* @return {Promise.<ImageryLayerFeatureInfo[]>|undefined} A promise for the picked features that will resolve when the asynchronous
* picking completes. The resolved value is an array of {@link ImageryLayerFeatureInfo}
* instances. The array may be empty if no features are found at the given location.
* It may also be undefined if picking is not supported.
*/
TileLonlatsImageryProvider.prototype.pickFeatures = function (x, y, level, longitude, latitude) {
return undefined;
};
/***
* arcgis地形图 在线
* ArcGisElevation3DTerrainProvider.js
* LERC()
* createArcGisElevation3DTerrainProvider();
*/
// This LERC function is from Esri/lerc and under the Apache License, Version 2.
function LERC() {
// WARNING: This decoder version can only read old version 1 Lerc blobs. Use with caution.
// A new, updated js Lerc decoder is in the works.
// Note: currently, this module only has an implementation for decoding LERC data, not encoding. The name of
// the class was chosen to be future proof.
var LercCodec = {};
LercCodec.defaultNoDataValue = -3.4027999387901484e+38; // smallest Float32 value
/**
* Decode a LERC byte stream and return an object containing the pixel data and some required and optional
* information about it, such as the image's width and height.
*
* @param {ArrayBuffer} input The LERC input byte stream
* @param {object} [options] Decoding options, containing any of the following properties:
* @config {number} [inputOffset = 0]
* Skip the first inputOffset bytes of the input byte stream. A valid LERC file is expected at that position.
* @config {Uint8Array} [encodedMask = null]
* If specified, the decoder will not read mask information from the input and use the specified encoded
* mask data instead. Mask header/data must not be present in the LERC byte stream in this case.
* @config {number} [noDataValue = LercCode.defaultNoDataValue]
* Pixel value to use for masked pixels.
* @config {ArrayBufferView|Array} [pixelType = Float32Array]
* The desired type of the pixelData array in the return value. Note that it is the caller's responsibility to
* provide an appropriate noDataValue if the default pixelType is overridden.
* @config {boolean} [returnMask = false]
* If true, the return value will contain a maskData property of type Uint8Array which has one element per
* pixel, the value of which is 1 or 0 depending on whether that pixel's data is present or masked. If the
* input LERC data does not contain a mask, maskData will not be returned.
* @config {boolean} [returnEncodedMask = false]
* If true, the return value will contain a encodedMaskData property, which can be passed into encode() as
* encodedMask.
* @config {boolean} [returnFileInfo = false]
* If true, the return value will have a fileInfo property that contains metadata obtained from the
* LERC headers and the decoding process.
* @config {boolean} [computeUsedBitDepths = false]
* If true, the fileInfo property in the return value will contain the set of all block bit depths
* encountered during decoding. Will only have an effect if returnFileInfo option is true.
* @returns {{width, height, pixelData, minValue, maxValue, noDataValue, [maskData], [encodedMaskData], [fileInfo]}}
*/
LercCodec.decode = function (input, options) {
options = options || {};
var skipMask = options.encodedMaskData || (options.encodedMaskData === null);
var parsedData = parse(input, options.inputOffset || 0, skipMask);
var noDataValue = (options.noDataValue != null) ? options.noDataValue : LercCodec.defaultNoDataValue;
var uncompressedData = uncompressPixelValues(parsedData, options.pixelType || Float32Array,
options.encodedMaskData, noDataValue, options.returnMask);
var result = {
width: parsedData.width,
height: parsedData.height,
pixelData: uncompressedData.resultPixels,
minValue: parsedData.pixels.minValue,
maxValue: parsedData.pixels.maxValue,
noDataValue: noDataValue
};
if (uncompressedData.resultMask) {
result.maskData = uncompressedData.resultMask;
}
if (options.returnEncodedMask && parsedData.mask) {
result.encodedMaskData = parsedData.mask.bitset ? parsedData.mask.bitset : null;
}
if (options.returnFileInfo) {
result.fileInfo = formatFileInfo(parsedData);
if (options.computeUsedBitDepths) {
result.fileInfo.bitDepths = computeUsedBitDepths(parsedData);
}
}
return result;
};
var uncompressPixelValues = function (data, TypedArrayClass, maskBitset, noDataValue, storeDecodedMask) {
var blockIdx = 0;
var numX = data.pixels.numBlocksX;
var numY = data.pixels.numBlocksY;
var blockWidth = Math.floor(data.width / numX);
var blockHeight = Math.floor(data.height / numY);
var scale = 2 * data.maxZError;
maskBitset = maskBitset || ((data.mask) ? data.mask.bitset : null);
var resultPixels, resultMask;
resultPixels = new TypedArrayClass(data.width * data.height);
if (storeDecodedMask && maskBitset) {
resultMask = new Uint8Array(data.width * data.height);
}
var blockDataBuffer = new Float32Array(blockWidth * blockHeight);
var xx, yy;
for (var y = 0; y <= numY; y++) {
var thisBlockHeight = (y !== numY) ? blockHeight : (data.height % numY);
if (thisBlockHeight === 0) {
continue;
}
for (var x = 0; x <= numX; x++) {
var thisBlockWidth = (x !== numX) ? blockWidth : (data.width % numX);
if (thisBlockWidth === 0) {
continue;
}
var outPtr = y * data.width * blockHeight + x * blockWidth;
var outStride = data.width - thisBlockWidth;
var block = data.pixels.blocks[blockIdx];
var blockData, blockPtr, constValue;
if (block.encoding < 2) {
// block is either uncompressed or bit-stuffed (encodings 0 and 1)
if (block.encoding === 0) {
// block is uncompressed
blockData = block.rawData;
} else {
// block is bit-stuffed
unstuff(block.stuffedData, block.bitsPerPixel, block.numValidPixels, block.offset, scale, blockDataBuffer, data.pixels.maxValue);
blockData = blockDataBuffer;
}
blockPtr = 0;
}
else if (block.encoding === 2) {
// block is all 0
constValue = 0;
}
else {
// block has constant value (encoding === 3)
constValue = block.offset;
}
var maskByte;
if (maskBitset) {
for (yy = 0; yy < thisBlockHeight; yy++) {
if (outPtr & 7) {
//
maskByte = maskBitset[outPtr >> 3];
maskByte <<= outPtr & 7;
}
for (xx = 0; xx < thisBlockWidth; xx++) {
if (!(outPtr & 7)) {
// read next byte from mask
maskByte = maskBitset[outPtr >> 3];
}
if (maskByte & 128) {
// pixel data present
if (resultMask) {
resultMask[outPtr] = 1;
}
resultPixels[outPtr++] = (block.encoding < 2) ? blockData[blockPtr++] : constValue;
} else {
// pixel data not present
if (resultMask) {
resultMask[outPtr] = 0;
}
resultPixels[outPtr++] = noDataValue;
}
maskByte <<= 1;
}
outPtr += outStride;
}
} else {
// mask not present, simply copy block over
if (block.encoding < 2) {
// duplicating this code block for performance reasons
// blockData case:
for (yy = 0; yy < thisBlockHeight; yy++) {
for (xx = 0; xx < thisBlockWidth; xx++) {
resultPixels[outPtr++] = blockData[blockPtr++];
}
outPtr += outStride;
}
}
else {
// constValue case:
for (yy = 0; yy < thisBlockHeight; yy++) {
for (xx = 0; xx < thisBlockWidth; xx++) {
resultPixels[outPtr++] = constValue;
}
outPtr += outStride;
}
}
}
if ((block.encoding === 1) && (blockPtr !== block.numValidPixels)) {
throw "Block and Mask do not match";
}
blockIdx++;
}
}
return {
resultPixels: resultPixels,
resultMask: resultMask
};
};
var formatFileInfo = function (data) {
return {
"fileIdentifierString": data.fileIdentifierString,
"fileVersion": data.fileVersion,
"imageType": data.imageType,
"height": data.height,
"width": data.width,
"maxZError": data.maxZError,
"eofOffset": data.eofOffset,
"mask": data.mask ? {
"numBlocksX": data.mask.numBlocksX,
"numBlocksY": data.mask.numBlocksY,
"numBytes": data.mask.numBytes,
"maxValue": data.mask.maxValue
} : null,
"pixels": {
"numBlocksX": data.pixels.numBlocksX,
"numBlocksY": data.pixels.numBlocksY,
"numBytes": data.pixels.numBytes,
"maxValue": data.pixels.maxValue,
"minValue": data.pixels.minValue,
"noDataValue": this.noDataValue
}
};
};
var computeUsedBitDepths = function (data) {
var numBlocks = data.pixels.numBlocksX * data.pixels.numBlocksY;
var bitDepths = {};
for (var i = 0; i < numBlocks; i++) {
var block = data.pixels.blocks[i];
if (block.encoding === 0) {
bitDepths.float32 = true;
} else if (block.encoding === 1) {
bitDepths[block.bitsPerPixel] = true;
} else {
bitDepths[0] = true;
}
}
return Object.keys(bitDepths);
};
var parse = function (input, fp, skipMask) {
var data = {};
// File header
var fileIdView = new Uint8Array(input, fp, 10);
data.fileIdentifierString = String.fromCharCode.apply(null, fileIdView);
if (data.fileIdentifierString.trim() != "CntZImage") {
throw "Unexpected file identifier string: " + data.fileIdentifierString;
}
fp += 10;
var view = new DataView(input, fp, 24);
data.fileVersion = view.getInt32(0, true);
data.imageType = view.getInt32(4, true);
data.height = view.getUint32(8, true);
data.width = view.getUint32(12, true);
data.maxZError = view.getFloat64(16, true);
fp += 24;
// Mask Header
if (!skipMask) {
view = new DataView(input, fp, 16);
data.mask = {};
data.mask.numBlocksY = view.getUint32(0, true);
data.mask.numBlocksX = view.getUint32(4, true);
data.mask.numBytes = view.getUint32(8, true);
data.mask.maxValue = view.getFloat32(12, true);
fp += 16;
// Mask Data
if (data.mask.numBytes > 0) {
var bitset = new Uint8Array(Math.ceil(data.width * data.height / 8));
view = new DataView(input, fp, data.mask.numBytes);
var cnt = view.getInt16(0, true);
var ip = 2, op = 0;
do {
if (cnt > 0) {
while (cnt--) { bitset[op++] = view.getUint8(ip++); }
} else {
var val = view.getUint8(ip++);
cnt = -cnt;
while (cnt--) { bitset[op++] = val; }
}
cnt = view.getInt16(ip, true);
ip += 2;
} while (ip < data.mask.numBytes);
if ((cnt !== -32768) || (op < bitset.length)) {
throw "Unexpected end of mask RLE encoding";
}
data.mask.bitset = bitset;
fp += data.mask.numBytes;
}
else if ((data.mask.numBytes | data.mask.numBlocksY | data.mask.maxValue) == 0)
{ // Special case, all nodata
var bitset = new Uint8Array(Math.ceil(data.width * data.height / 8));
data.mask.bitset = bitset;
}
}
// Pixel Header
view = new DataView(input, fp, 16);
data.pixels = {};
data.pixels.numBlocksY = view.getUint32(0, true);
data.pixels.numBlocksX = view.getUint32(4, true);
data.pixels.numBytes = view.getUint32(8, true);
data.pixels.maxValue = view.getFloat32(12, true);
fp += 16;
var numBlocksX = data.pixels.numBlocksX;
var numBlocksY = data.pixels.numBlocksY;
// the number of blocks specified in the header does not take into account the blocks at the end of
// each row/column with a special width/height that make the image complete in case the width is not
// evenly divisible by the number of blocks.
var actualNumBlocksX = numBlocksX + ((data.width % numBlocksX) > 0 ? 1 : 0);
var actualNumBlocksY = numBlocksY + ((data.height % numBlocksY) > 0 ? 1 : 0);
data.pixels.blocks = new Array(actualNumBlocksX * actualNumBlocksY);
var minValue = 1000000000;
var blockI = 0;
for (var blockY = 0; blockY < actualNumBlocksY; blockY++) {
for (var blockX = 0; blockX < actualNumBlocksX; blockX++) {
// Block
var size = 0;
var bytesLeft = input.byteLength - fp;
view = new DataView(input, fp, Math.min(10, bytesLeft));
var block = {};
data.pixels.blocks[blockI++] = block;
var headerByte = view.getUint8(0); size++;
block.encoding = headerByte & 63;
if (block.encoding > 3) {
throw "Invalid block encoding (" + block.encoding + ")";
}
if (block.encoding === 2) {
fp++;
minValue = Math.min(minValue, 0);
continue;
}
if ((headerByte !== 0) && (headerByte !== 2)) {
headerByte >>= 6;
block.offsetType = headerByte;
if (headerByte === 2) {
block.offset = view.getInt8(1); size++;
} else if (headerByte === 1) {
block.offset = view.getInt16(1, true); size += 2;
} else if (headerByte === 0) {
block.offset = view.getFloat32(1, true); size += 4;
} else {
throw "Invalid block offset type";
}
minValue = Math.min(block.offset, minValue);
if (block.encoding === 1) {
headerByte = view.getUint8(size); size++;
block.bitsPerPixel = headerByte & 63;
headerByte >>= 6;
block.numValidPixelsType = headerByte;
if (headerByte === 2) {
block.numValidPixels = view.getUint8(size); size++;
} else if (headerByte === 1) {
block.numValidPixels = view.getUint16(size, true); size += 2;
} else if (headerByte === 0) {
block.numValidPixels = view.getUint32(size, true); size += 4;
} else {
throw "Invalid valid pixel count type";
}
}
}
fp += size;
if (block.encoding == 3) {
continue;
}
var arrayBuf, store8;
if (block.encoding === 0) {
var numPixels = (data.pixels.numBytes - 1) / 4;
if (numPixels !== Math.floor(numPixels)) {
throw "uncompressed block has invalid length";
}
arrayBuf = new ArrayBuffer(numPixels * 4);
store8 = new Uint8Array(arrayBuf);
store8.set(new Uint8Array(input, fp, numPixels * 4));
var rawData = new Float32Array(arrayBuf);
for (var j = 0; j < rawData.length; j++) {
minValue = Math.min(minValue, rawData[j]);
}
block.rawData = rawData;
fp += numPixels * 4;
} else if (block.encoding === 1) {
var dataBytes = Math.ceil(block.numValidPixels * block.bitsPerPixel / 8);
var dataWords = Math.ceil(dataBytes / 4);
arrayBuf = new ArrayBuffer(dataWords * 4);
store8 = new Uint8Array(arrayBuf);
store8.set(new Uint8Array(input, fp, dataBytes));
block.stuffedData = new Uint32Array(arrayBuf);
fp += dataBytes;
}
}
}
data.pixels.minValue = minValue;
data.eofOffset = fp;
return data;
};
var unstuff = function (src, bitsPerPixel, numPixels, offset, scale, dest, maxValue) {
var bitMask = (1 << bitsPerPixel) - 1;
var i = 0, o;
var bitsLeft = 0;
var n, buffer;
var nmax = Math.ceil((maxValue - offset) / scale);
// get rid of trailing bytes that are already part of next block
var numInvalidTailBytes = src.length * 4 - Math.ceil(bitsPerPixel * numPixels / 8);
src[src.length - 1] <<= 8 * numInvalidTailBytes;
for (o = 0; o < numPixels; o++) {
if (bitsLeft === 0) {
buffer = src[i++];
bitsLeft = 32;
}
if (bitsLeft >= bitsPerPixel) {
n = (buffer >>> (bitsLeft - bitsPerPixel)) & bitMask;
bitsLeft -= bitsPerPixel;
} else {
var missingBits = (bitsPerPixel - bitsLeft);
n = ((buffer & bitMask) << missingBits) & bitMask;
buffer = src[i++];
bitsLeft = 32 - missingBits;
n += (buffer >>> bitsLeft);
}
//pixel values may exceed max due to quantization
dest[o] = n < nmax? offset + n * scale: maxValue;
}
return dest;
};
return LercCodec
};
function createArcGisElevation3DTerrainProvider(Cesium){
// The following code is written by Peter Lu
// I disclaims copyright to this source code
// and I really hope one day, it coube be merged with Cesium Trunk~
/**
* A {@link TerrainProvider} that produces terrain geometry by tessellating height maps
* retrieved from an ArcGIS Elevation3D Server.
*
* @alias ArcGisElevation3DTerrainProvider
* @constructor
*
* @example
* var terrainProvider = new ArcGisElevation3DTerrainProvider();
* viewer.terrainProvider = terrainProvider;
*
* @see TerrainProvider
*/
function ArcGisElevation3DTerrainProvider(options) {
options = Cesium.defaultValue(options, {});
this._tilingScheme = new Cesium.WebMercatorTilingScheme({ ellipsoid : options.ellipsoid });
this._terrainDataStructure = {
heightScale : 1,
heightOffset : 0,
elementsPerHeight : 1,
stride : 1,
elementMultiplier : 65.0
};
this.lerc = LERC();
// Note: the 64 below does NOT need to match the actual vertex dimensions, because
// the ellipsoid is significantly smoother than actual terrain.
this._levelZeroMaximumGeometricError = Cesium.TerrainProvider.getEstimatedLevelZeroGeometricErrorForAHeightmap(this._tilingScheme.ellipsoid, 65,
this._tilingScheme.getNumberOfXTilesAtLevel(0));
this._baseUrl = "https://elevation3d.arcgis.com/arcgis/rest/services/WorldElevation3D/Terrain3D/ImageServer/tile/{z}/{y}/{x}";
this._errorEvent = new Cesium.Event();
this._readyPromise = Cesium.when.resolve(true);
}
Cesium.defineProperties(ArcGisElevation3DTerrainProvider.prototype, {
/**
* Gets an event that is raised when the terrain provider encounters an asynchronous error. By subscribing
* to the event, you will be notified of the error and can potentially recover from it. Event listeners
* are passed an instance of {@link TileProviderError}.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {Event}
*/
errorEvent : {
get : function() {
return this._errorEvent;
}
},
/**
* Gets the credit to display when this terrain provider is active. Typically this is used to credit
* the source of the terrain. This function should not be called before {@link ArcGisElevation3DTerrainProvider#ready} returns true.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {Credit}
*/
credit : {
get : function() {
return this._credit;
}
},
/**
* Gets the tiling scheme used by this provider. This function should
* not be called before {@link ArcGisElevation3DTerrainProvider#ready} returns true.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {GeographicTilingScheme}
*/
tilingScheme : {
get : function() {
return this._tilingScheme;
}
},
/**
* Gets a value indicating whether or not the provider is ready for use.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {Boolean}
*/
ready : {
get : function() {
return true;
}
},
/**
* Gets a promise that resolves to true when the provider is ready for use.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {Promise.<Boolean>}
* @readonly
*/
readyPromise : {
get : function() {
return this._readyPromise;
}
},
/**
* Gets a value indicating whether or not the provider includes a water mask. The water mask
* indicates which areas of the globe are water rather than land, so they can be rendered
* as a reflective surface with animated waves. This function should not be
* called before {@link ArcGisElevation3DTerrainProvider#ready} returns true.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {Boolean}
*/
hasWaterMask : {
get : function() {
return false;
}
},
/**
* Gets a value indicating whether or not the requested tiles include vertex normals.
* This function should not be called before {@link ArcGisElevation3DTerrainProvider#ready} returns true.
* @memberof ArcGisElevation3DTerrainProvider.prototype
* @type {Boolean}
*/
hasVertexNormals : {
get : function() {
return false;
}
}
});
/**
* Requests the geometry for a given tile. This function should not be called before
* {@link ArcGisElevation3DTerrainProvider#ready} returns true. The result includes terrain
* data and indicates that all child tiles are available.
*
* @param {Number} x The X coordinate of the tile for which to request geometry.
* @param {Number} y The Y coordinate of the tile for which to request geometry.
* @param {Number} level The level of the tile for which to request geometry.
* @returns {Promise.<TerrainData>|undefined} A promise for the requested geometry. If this method
* returns undefined instead of a promise, it is an indication that too many requests are already
* pending and the request will be retried later.
*/
ArcGisElevation3DTerrainProvider.prototype.requestTileGeometry = function(x, y, level) {
var url = this._baseUrl.replace('{z}', level).replace('{x}', x).replace('{y}', y);
var that = this;
var resource = Cesium.Resource.createIfNeeded(url);
return resource.fetchArrayBuffer().then(function(buffer) {
var bufferNow = buffer;
var pixels, mask, min, max, height, width;
var decodedPixelBlock = that.lerc.decode(buffer, { returnMask: true });
width = decodedPixelBlock.width;
height = decodedPixelBlock.height;
min = decodedPixelBlock.minValue;
max = decodedPixelBlock.maxValue;
pixels = decodedPixelBlock.pixelData;
mask = decodedPixelBlock.maskData;
var bEmptyData = 0;
var setWidth = 65;
var nRatio = 4;
var fWidth = setWidth;
var fHeight = setWidth;
var buffer = new Float32Array(fWidth*fHeight);
for(var i=0;i<fHeight;i++){
for(var j=0;j<fWidth;j++){
if(mask&&mask[i*width*nRatio+j*nRatio]==0){
buffer[i*fWidth+j] = 0;
}else{
buffer[i*fWidth+j] = pixels[i*width*nRatio+j*nRatio];
bEmptyData++;
}
}
}
return new Cesium.HeightmapTerrainData({
buffer : buffer,
width : fWidth,
height : fHeight,
structure : that._terrainDataStructure
});
// if(bEmptyData !=0){
// return new Cesium.HeightmapTerrainData({
// buffer : buffer,
// width : fWidth,
// height : fHeight,
// structure : that._terrainDataStructure
// });
// }else{
// return {bEmptyData:true};
// }
}).otherwise(function(error) {
});
return
};
/**
* Gets the maximum geometric error allowed in a tile at a given level.
*
* @param {Number} level The tile level for which to get the maximum geometric error.
* @returns {Number} The maximum geometric error.
*/
ArcGisElevation3DTerrainProvider.prototype.getLevelMaximumGeometricError = function(level) {
return this._levelZeroMaximumGeometricError / (1 << level);
};
/**
* Determines whether data for a tile is available to be loaded.
*
* @param {Number} x The X coordinate of the tile for which to request geometry.
* @param {Number} y The Y coordinate of the tile for which to request geometry.
* @param {Number} level The level of the tile for which to request geometry.
* @returns {Boolean} Undefined if not supported, otherwise true or false.
*/
ArcGisElevation3DTerrainProvider.prototype.getTileDataAvailable = function(x, y, level) {
return undefined;
};
return new ArcGisElevation3DTerrainProvider();
}
/**
* 标绘
* plot algorithm.js plotUtil.js
* @override
* 全局变量
*/
var xp = {
version: "1.0.0",
createTime: "2018.6.19",
author: "xupinhui"
}
var doubleArrowDefualParam = {
type: "doublearrow",
headHeightFactor: .25,
headWidthFactor: .3,
neckHeightFactor: .85,
fixPointCount: 4,
neckWidthFactor: .15
}
var tailedAttackArrowDefualParam = {
headHeightFactor: .18,
headWidthFactor: .3,
neckHeightFactor: .85,
neckWidthFactor: .15,
tailWidthFactor: .1,
headTailFactor: .8,
swallowTailFactor: 1
};
var fineArrowDefualParam = {
tailWidthFactor: 0.15,
neckWidthFactor: 0.20,
headWidthFactor: 0.25,
headAngle: Math.PI / 8.5,
neckAngle: Math.PI / 13
};
xp.algorithm = {},
xp.algorithm.doubleArrow = function (inputPoint) {
this.connPoint = null;
this.tempPoint4 = null;
this.points = inputPoint;
var result = {
controlPoint: null,
polygonalPoint: null
};
//获取已经点击的坐标数
var t = inputPoint.length;
if (!(2 > t)) {
if (2 == t) return inputPoint;
var o = this.points[0], //第一个点
e = this.points[1], //第二个点
r = this.points[2], //第三个点
t = inputPoint.length; //获取已经点击的坐标数
//下面的是移动点位后的坐标
3 == t ? this.tempPoint4 = xp.algorithm.getTempPoint4(o, e, r) : this.tempPoint4 = this.points[3],
3 == t || 4 == t ? this.connPoint = P.PlotUtils.mid(o, e) : this.connPoint = this.points[4];
var n, g;
P.PlotUtils.isClockWise(o, e, r) ? (n = xp.algorithm.getArrowPoints(o, this.connPoint, this.tempPoint4, !1), g = xp.algorithm.getArrowPoints(this.connPoint, e, r, !0)) : (n = xp.algorithm.getArrowPoints(e, this.connPoint, r, !1), g = xp.algorithm.getArrowPoints(this.connPoint, o, this.tempPoint4, !0));
var i = n.length,
s = (i - 5) / 2,
a = n.slice(0, s),
l = n.slice(s, s + 5),
u = n.slice(s + 5, i),
c = g.slice(0, s),
p = g.slice(s, s + 5),
h = g.slice(s + 5, i);
c = P.PlotUtils.getBezierPoints(c);
var d = P.PlotUtils.getBezierPoints(h.concat(a.slice(1)));
u = P.PlotUtils.getBezierPoints(u);
var f = c.concat(p, d, l, u);
var newArray = xp.algorithm.array2Dto1D(f);
result.controlPoint = [o, e, r, this.tempPoint4, this.connPoint];
result.polygonalPoint = Cesium.Cartesian3.fromDegreesArray(newArray);
}
return result;
},
xp.algorithm.threeArrow = function (inputPoint) {
this.connPoint = null;
this.tempPoint4 = null;
this.tempPoint5 = null;
this.points = inputPoint;
var result = {
controlPoint: null,
polygonalPoint: null
};
//获取已经点击的坐标数
var t = inputPoint.length;
if (t >= 2) {
if (t == 2) {
return inputPoint;
}
var o = this.points[0], //第一个点
e = this.points[1], //第二个点
r = this.points[2], //第三个点
t = inputPoint.length; //获取已经点击的坐标数
//下面的是移动点位后的坐标
if (t == 3) {
this.tempPoint4 = xp.algorithm.getTempPoint4(o, e, r);
this.tempPoint5 = P.PlotUtils.mid(r, this.tempPoint4);
} else {
this.tempPoint4 = this.points[3];
this.tempPoint5 = this.points[4];
}
if (t < 6) {
this.connPoint = P.PlotUtils.mid(o, e);
} else {
this.connPoint = this.points[5];
}
var n, g;
if (P.PlotUtils.isClockWise(o, e, r)) {
n = xp.algorithm.getArrowPoints(o, this.connPoint, this.tempPoint4, !1);
g = xp.algorithm.getArrowPoints(this.connPoint, e, r, !0);
} else {
n = xp.algorithm.getArrowPoints(e, this.connPoint, r, !1);
g = xp.algorithm.getArrowPoints(this.connPoint, o, this.tempPoint4, !0);
}
var i = n.length,
s = (i - 5) / 2,
a = n.slice(0, s),
l = n.slice(s, s + 5),
u = n.slice(s + 5, i),
c = g.slice(0, s),
p = g.slice(s, s + 5),
h = g.slice(s + 5, i);
c = P.PlotUtils.getBezierPoints(c);
var d = P.PlotUtils.getBezierPoints(h.concat(a.slice(1)));
u = P.PlotUtils.getBezierPoints(u);
var f = c.concat(p, d, l, u);
var newArray = xp.algorithm.array2Dto1D(f);
result.controlPoint = [o, e, r, this.tempPoint4, this.tempPoint5, this.connPoint];
result.polygonalPoint = Cesium.Cartesian3.fromDegreesArray(newArray);
}
return result;
},
xp.algorithm.array2Dto1D = function (array) {
var newArray = [];
array.forEach(function (elt) {
newArray.push(elt[0]);
newArray.push(elt[1]);
});
return newArray;
},
xp.algorithm.getArrowPoints = function (t, o, e, r) {
this.type = doubleArrowDefualParam.type,
this.headHeightFactor = doubleArrowDefualParam.headHeightFactor,
this.headWidthFactor = doubleArrowDefualParam.headWidthFactor,
this.neckHeightFactor = doubleArrowDefualParam.neckHeightFactor,
this.neckWidthFactor = doubleArrowDefualParam.neckWidthFactor;
var n = P.PlotUtils.mid(t, o),
g = P.PlotUtils.distance(n, e),
i = P.PlotUtils.getThirdPoint(e, n, 0, .3 * g, !0),
s = P.PlotUtils.getThirdPoint(e, n, 0, .5 * g, !0);
i = P.PlotUtils.getThirdPoint(n, i, P.Constants.HALF_PI, g / 5, r),
s = P.PlotUtils.getThirdPoint(n, s, P.Constants.HALF_PI, g / 4, r);
var a = [n, i, s, e],
l = xp.algorithm.getArrowHeadPoints(a, this.headHeightFactor, this.headWidthFactor, this.neckHeightFactor, this.neckWidthFactor),
u = l[0],
c = l[4],
p = P.PlotUtils.distance(t, o) / P.PlotUtils.getBaseLength(a) / 2,
h = xp.algorithm.getArrowBodyPoints(a, u, c, p),
d = h.length,
f = h.slice(0, d / 2),
E = h.slice(d / 2, d);
return f.push(u),
E.push(c),
f = f.reverse(),
f.push(o),
E = E.reverse(),
E.push(t),
f.reverse().concat(l, E)
},
xp.algorithm.getArrowHeadPoints = function (t, o, e) {
this.type = doubleArrowDefualParam.type,
this.headHeightFactor = doubleArrowDefualParam.headHeightFactor,
this.headWidthFactor = doubleArrowDefualParam.headWidthFactor,
this.neckHeightFactor = doubleArrowDefualParam.neckHeightFactor,
this.neckWidthFactor = doubleArrowDefualParam.neckWidthFactor;
var r = P.PlotUtils.getBaseLength(t),
n = r * this.headHeightFactor,
g = t[t.length - 1],
i = (P.PlotUtils.distance(o, e), n * this.headWidthFactor),
s = n * this.neckWidthFactor,
a = n * this.neckHeightFactor,
l = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, n, !0),
u = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, a, !0),
c = P.PlotUtils.getThirdPoint(g, l, P.Constants.HALF_PI, i, !1),
p = P.PlotUtils.getThirdPoint(g, l, P.Constants.HALF_PI, i, !0),
h = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !1),
d = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !0);
return [h, c, g, p, d];
},
xp.algorithm.getArrowBodyPoints = function (t, o, e, r) {
for (var n = P.PlotUtils.wholeDistance(t), g = P.PlotUtils.getBaseLength(t), i = g * r, s = P.PlotUtils.distance(o, e), a = (i - s) / 2, l = 0, u = [], c = [], p = 1; p < t.length - 1; p++) {
var h = P.PlotUtils.getAngleOfThreePoints(t[p - 1], t[p], t[p + 1]) / 2;
l += P.PlotUtils.distance(t[p - 1], t[p]);
var d = (i / 2 - l / n * a) / Math.sin(h),
f = P.PlotUtils.getThirdPoint(t[p - 1], t[p], Math.PI - h, d, !0),
E = P.PlotUtils.getThirdPoint(t[p - 1], t[p], h, d, !1);
u.push(f),
c.push(E)
}
return u.concat(c)
},
xp.algorithm.getTempPoint4 = function (t, o, e) {
var r, n, g, i, s = P.PlotUtils.mid(t, o),
a = P.PlotUtils.distance(s, e),
l = P.PlotUtils.getAngleOfThreePoints(t, s, e);
return l < P.Constants.HALF_PI ? (n = a * Math.sin(l), g = a * Math.cos(l), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !1), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !0)) : l >= P.Constants.HALF_PI && l < Math.PI ? (n = a * Math.sin(Math.PI - l), g = a * Math.cos(Math.PI - l), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !1), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !1)) : l >= Math.PI && l < 1.5 * Math.PI ? (n = a * Math.sin(l - Math.PI), g = a * Math.cos(l - Math.PI), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !0), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !0)) : (n = a * Math.sin(2 * Math.PI - l), g = a * Math.cos(2 * Math.PI - l), i = P.PlotUtils.getThirdPoint(t, s, P.Constants.HALF_PI, n, !0), r = P.PlotUtils.getThirdPoint(s, i, P.Constants.HALF_PI, g, !1)),
r
},
xp.algorithm.tailedAttackArrow = function (inputPoint) {
inputPoint = xp.algorithm.dereplication(inputPoint);
this.tailWidthFactor = tailedAttackArrowDefualParam.tailWidthFactor;
this.swallowTailFactor = tailedAttackArrowDefualParam.swallowTailFactor;
this.swallowTailPnt = tailedAttackArrowDefualParam.swallowTailPnt;
//控制点
var result = {
controlPoint: null,
polygonalPoint: null
};
result.controlPoint = inputPoint;
var t = inputPoint.length;
if (!(2 > t)) {
if (2 == inputPoint.length) {
result.polygonalPoint = inputPoint;
return result;
}
var o = inputPoint,
e = o[0],
r = o[1];
P.PlotUtils.isClockWise(o[0], o[1], o[2]) && (e = o[1], r = o[0]);
var n = P.PlotUtils.mid(e, r),
g = [n].concat(o.slice(2)),
i = xp.algorithm.getAttackArrowHeadPoints(g, e, r, tailedAttackArrowDefualParam),
s = i[0],
a = i[4],
l = P.PlotUtils.distance(e, r),
u = P.PlotUtils.getBaseLength(g),
c = u * this.tailWidthFactor * this.swallowTailFactor;
this.swallowTailPnt = P.PlotUtils.getThirdPoint(g[1], g[0], 0, c, !0);
var p = l / u,
h = xp.algorithm.getAttackArrowBodyPoints(g, s, a, p),
t = h.length,
d = [e].concat(h.slice(0, t / 2));
d.push(s);
var f = [r].concat(h.slice(t / 2, t));
var newArray = [];
f.push(a),
d = P.PlotUtils.getQBSplinePoints(d),
f = P.PlotUtils.getQBSplinePoints(f),
newArray = xp.algorithm.array2Dto1D(d.concat(i, f.reverse(), [this.swallowTailPnt, d[0]]));
result.polygonalPoint = Cesium.Cartesian3.fromDegreesArray(newArray);
}
return result;
},
xp.algorithm.getAttackArrowHeadPoints = function (t, o, e, defaultParam) {
this.headHeightFactor = defaultParam.headHeightFactor;
this.headTailFactor = defaultParam.headTailFactor;
this.headWidthFactor = defaultParam.headWidthFactor;
this.neckWidthFactor = defaultParam.neckWidthFactor;
this.neckHeightFactor = defaultParam.neckHeightFactor;
var r = P.PlotUtils.getBaseLength(t),
n = r * this.headHeightFactor,
g = t[t.length - 1];
r = P.PlotUtils.distance(g, t[t.length - 2]);
var i = P.PlotUtils.distance(o, e);
n > i * this.headTailFactor && (n = i * this.headTailFactor);
var s = n * this.headWidthFactor,
a = n * this.neckWidthFactor;
n = n > r ? r : n;
var l = n * this.neckHeightFactor,
u = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, n, !0),
c = P.PlotUtils.getThirdPoint(t[t.length - 2], g, 0, l, !0),
p = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !1),
h = P.PlotUtils.getThirdPoint(g, u, P.Constants.HALF_PI, s, !0),
d = P.PlotUtils.getThirdPoint(g, c, P.Constants.HALF_PI, a, !1),
f = P.PlotUtils.getThirdPoint(g, c, P.Constants.HALF_PI, a, !0);
return [d, p, g, h, f]
},
xp.algorithm.getAttackArrowBodyPoints = function (t, o, e, r) {
for (var n = P.PlotUtils.wholeDistance(t), g = P.PlotUtils.getBaseLength(t), i = g * r, s = P.PlotUtils.distance(o, e), a = (i - s) / 2, l = 0, u = [], c = [], p = 1; p < t.length - 1; p++) {
var h = P.PlotUtils.getAngleOfThreePoints(t[p - 1], t[p], t[p + 1]) / 2;
l += P.PlotUtils.distance(t[p - 1], t[p]);
var d = (i / 2 - l / n * a) / Math.sin(h),
f = P.PlotUtils.getThirdPoint(t[p - 1], t[p], Math.PI - h, d, !0),
E = P.PlotUtils.getThirdPoint(t[p - 1], t[p], h, d, !1);
u.push(f),
c.push(E)
}
return u.concat(c)
},
xp.algorithm.dereplication = function (array) {
var last = array[array.length - 1];
var change = false;
var newArray = [];
newArray = array.filter(function (i) {
if (i[0] != last[0] && i[1] != last[1]) {
return i;
}
change = true;
});
if (change) newArray.push(last);
return newArray;
},
xp.algorithm.fineArrow = function (tailPoint, headerPoint) {
if ((tailPoint.length < 2) || (headerPoint.length < 2)) return;
//画箭头的函数
let tailWidthFactor = fineArrowDefualParam.tailWidthFactor;
let neckWidthFactor = fineArrowDefualParam.neckWidthFactor;
let headWidthFactor = fineArrowDefualParam.headWidthFactor;
let headAngle = fineArrowDefualParam.headAngle;
let neckAngle = fineArrowDefualParam.neckAngle;
var o = [];
o[0] = tailPoint;
o[1] = headerPoint;
e = o[0],
r = o[1],
n = P.PlotUtils.getBaseLength(o),
g = n * tailWidthFactor,
//尾部宽度因子
i = n * neckWidthFactor,
//脖子宽度银子
s = n * headWidthFactor,
//头部宽度因子
a = P.PlotUtils.getThirdPoint(r, e, P.Constants.HALF_PI, g, !0),
l = P.PlotUtils.getThirdPoint(r, e, P.Constants.HALF_PI, g, !1),
u = P.PlotUtils.getThirdPoint(e, r, headAngle, s, !1),
c = P.PlotUtils.getThirdPoint(e, r, headAngle, s, !0),
p = P.PlotUtils.getThirdPoint(e, r, neckAngle, i, !1),
h = P.PlotUtils.getThirdPoint(e, r, neckAngle, i, !0),
d = [];
d.push(a[0], a[1], p[0], p[1], u[0], u[1], r[0], r[1], c[0], c[1], h[0], h[1], l[0], l[1], e[0], e[1]);
return Cesium.Cartesian3.fromDegreesArray(d);
}
var P = {version: "1.0.0"}
P.PlotUtils = {}, P.PlotUtils.distance = function(t, o) {
return Math.sqrt(Math.pow(t[0] - o[0], 2) + Math.pow(t[1] - o[1], 2))
}, P.PlotUtils.wholeDistance = function(t) {
for (var o = 0, e = 0; e < t.length - 1; e++) o += P.PlotUtils.distance(t[e], t[e + 1]);
return o
}, P.PlotUtils.getBaseLength = function(t) {
return Math.pow(P.PlotUtils.wholeDistance(t), .99)
}, P.PlotUtils.mid = function(t, o) {
return [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2]
}, P.PlotUtils.getCircleCenterOfThreePoints = function(t, o, e) {
var r = [(t[0] + o[0]) / 2, (t[1] + o[1]) / 2],
n = [r[0] - t[1] + o[1], r[1] + t[0] - o[0]],
g = [(t[0] + e[0]) / 2, (t[1] + e[1]) / 2],
i = [g[0] - t[1] + e[1], g[1] + t[0] - e[0]];
return P.PlotUtils.getIntersectPoint(r, n, g, i)
}, P.PlotUtils.getIntersectPoint = function(t, o, e, r) {
if (t[1] == o[1]) {
var n = (r[0] - e[0]) / (r[1] - e[1]),
g = n * (t[1] - e[1]) + e[0],
i = t[1];
return [g, i]
}
if (e[1] == r[1]) {
var s = (o[0] - t[0]) / (o[1] - t[1]);
return g = s * (e[1] - t[1]) + t[0], i = e[1], [g, i]
}
return s = (o[0] - t[0]) / (o[1] - t[1]), n = (r[0] - e[0]) / (r[1] - e[1]), i = (s * t[1] - t[0] - n * e[1] + e[0]) / (s - n), g = s * i - s * t[1] + t[0], [g, i]
}, P.PlotUtils.getAzimuth = function(t, o) {
var e, r = Math.asin(Math.abs(o[1] - t[1]) / P.PlotUtils.distance(t, o));
return o[1] >= t[1] && o[0] >= t[0] ? e = r + Math.PI : o[1] >= t[1] && o[0] < t[0] ? e = P.Constants.TWO_PI - r : o[1] < t[1] && o[0] < t[0] ? e = r : o[1] < t[1] && o[0] >= t[0] && (e = Math.PI - r), e
}, P.PlotUtils.getAngleOfThreePoints = function(t, o, e) {
var r = P.PlotUtils.getAzimuth(o, t) - P.PlotUtils.getAzimuth(o, e);
return 0 > r ? r + P.Constants.TWO_PI : r
}, P.PlotUtils.isClockWise = function(t, o, e) {
return (e[1] - t[1]) * (o[0] - t[0]) > (o[1] - t[1]) * (e[0] - t[0])
}, P.PlotUtils.getPointOnLine = function(t, o, e) {
var r = o[0] + t * (e[0] - o[0]),
n = o[1] + t * (e[1] - o[1]);
return [r, n]
}, P.PlotUtils.getCubicValue = function(t, o, e, r, n) {
t = Math.max(Math.min(t, 1), 0);
var g = 1 - t,
i = t * t,
s = i * t,
a = g * g,
l = a * g,
u = l * o[0] + 3 * a * t * e[0] + 3 * g * i * r[0] + s * n[0],
c = l * o[1] + 3 * a * t * e[1] + 3 * g * i * r[1] + s * n[1];
return [u, c]
}, P.PlotUtils.getThirdPoint = function(t, o, e, r, n) {
var g = P.PlotUtils.getAzimuth(t, o),
i = n ? g + e : g - e,
s = r * Math.cos(i),
a = r * Math.sin(i);
return [o[0] + s, o[1] + a]
}, P.PlotUtils.getArcPoints = function(t, o, e, r) {
var n, g, i = [],
s = r - e;
s = 0 > s ? s + P.Constants.TWO_PI : s;
for (var a = 0; a <= P.Constants.FITTING_COUNT; a++) {
var l = e + s * a / P.Constants.FITTING_COUNT;
n = t[0] + o * Math.cos(l), g = t[1] + o * Math.sin(l), i.push([n, g])
}
return i
}, P.PlotUtils.getBisectorNormals = function(t, o, e, r) {
var n = P.PlotUtils.getNormal(o, e, r),
g = Math.sqrt(n[0] * n[0] + n[1] * n[1]),
i = n[0] / g,
s = n[1] / g,
a = P.PlotUtils.distance(o, e),
l = P.PlotUtils.distance(e, r);
if (g > P.Constants.ZERO_TOLERANCE) if (P.PlotUtils.isClockWise(o, e, r)) {
var u = t * a,
c = e[0] - u * s,
p = e[1] + u * i,
h = [c, p];
u = t * l, c = e[0] + u * s, p = e[1] - u * i;
var d = [c, p]
} else u = t * a, c = e[0] + u * s, p = e[1] - u * i, h = [c, p], u = t * l, c = e[0] - u * s, p = e[1] + u * i, d = [c, p];
else c = e[0] + t * (o[0] - e[0]), p = e[1] + t * (o[1] - e[1]), h = [c, p], c = e[0] + t * (r[0] - e[0]), p = e[1] + t * (r[1] - e[1]), d = [c, p];
return [h, d]
}, P.PlotUtils.getNormal = function(t, o, e) {
var r = t[0] - o[0],
n = t[1] - o[1],
g = Math.sqrt(r * r + n * n);
r /= g, n /= g;
var i = e[0] - o[0],
s = e[1] - o[1],
a = Math.sqrt(i * i + s * s);
i /= a, s /= a;
var l = r + i,
u = n + s;
return [l, u]
}, P.PlotUtils.getCurvePoints = function(t, o) {
for (var e = P.PlotUtils.getLeftMostControlPoint(o), r = [e], n = 0; n < o.length - 2; n++) {
var g = o[n],
i = o[n + 1],
s = o[n + 2],
a = P.PlotUtils.getBisectorNormals(t, g, i, s);
r = r.concat(a)
}
var l = P.PlotUtils.getRightMostControlPoint(o);
r.push(l);
var u = [];
for (n = 0; n < o.length - 1; n++) {
g = o[n], i = o[n + 1], u.push(g);
for (var t = 0; t < P.Constants.FITTING_COUNT; t++) {
var c = P.PlotUtils.getCubicValue(t / P.Constants.FITTING_COUNT, g, r[2 * n], r[2 * n + 1], i);
u.push(c)
}
u.push(i)
}
return u
}, P.PlotUtils.getLeftMostControlPoint = function(o) {
var e = o[0],
r = o[1],
n = o[2],
g = P.PlotUtils.getBisectorNormals(0, e, r, n),
i = g[0],
s = P.PlotUtils.getNormal(e, r, n),
a = Math.sqrt(s[0] * s[0] + s[1] * s[1]);
if (a > P.Constants.ZERO_TOLERANCE) var l = P.PlotUtils.mid(e, r),
u = e[0] - l[0],
c = e[1] - l[1],
p = P.PlotUtils.distance(e, r),
h = 2 / p,
d = -h * c,
f = h * u,
E = d * d - f * f,
v = 2 * d * f,
A = f * f - d * d,
_ = i[0] - l[0],
y = i[1] - l[1],
m = l[0] + E * _ + v * y,
O = l[1] + v * _ + A * y;
else m = e[0] + t * (r[0] - e[0]), O = e[1] + t * (r[1] - e[1]);
return [m, O]
}, P.PlotUtils.getRightMostControlPoint = function(o) {
var e = o.length,
r = o[e - 3],
n = o[e - 2],
g = o[e - 1],
i = P.PlotUtils.getBisectorNormals(0, r, n, g),
s = i[1],
a = P.PlotUtils.getNormal(r, n, g),
l = Math.sqrt(a[0] * a[0] + a[1] * a[1]);
if (l > P.Constants.ZERO_TOLERANCE) var u = P.PlotUtils.mid(n, g),
c = g[0] - u[0],
p = g[1] - u[1],
h = P.PlotUtils.distance(n, g),
d = 2 / h,
f = -d * p,
E = d * c,
v = f * f - E * E,
A = 2 * f * E,
_ = E * E - f * f,
y = s[0] - u[0],
m = s[1] - u[1],
O = u[0] + v * y + A * m,
T = u[1] + A * y + _ * m;
else O = g[0] + t * (n[0] - g[0]), T = g[1] + t * (n[1] - g[1]);
return [O, T]
}, P.PlotUtils.getBezierPoints = function(t) {
if (t.length <= 2) return t;
for (var o = [], e = t.length - 1, r = 0; 1 >= r; r += .01) {
for (var n = y = 0, g = 0; e >= g; g++) {
var i = P.PlotUtils.getBinomialFactor(e, g),
s = Math.pow(r, g),
a = Math.pow(1 - r, e - g);
n += i * s * a * t[g][0], y += i * s * a * t[g][1]
}
o.push([n, y])
}
return o.push(t[e]), o
}, P.PlotUtils.getBinomialFactor = function(t, o) {
return P.PlotUtils.getFactorial(t) / (P.PlotUtils.getFactorial(o) * P.PlotUtils.getFactorial(t - o))
}, P.PlotUtils.getFactorial = function(t) {
if (1 >= t) return 1;
if (2 == t) return 2;
if (3 == t) return 6;
if (4 == t) return 24;
if (5 == t) return 120;
for (var o = 1, e = 1; t >= e; e++) o *= e;
return o
}, P.PlotUtils.getQBSplinePoints = function(t) {
if (t.length <= 2) return t;
var o = 2,
e = [],
r = t.length - o - 1;
e.push(t[0]);
for (var n = 0; r >= n; n++) for (var g = 0; 1 >= g; g += .05) {
for (var i = y = 0, s = 0; o >= s; s++) {
var a = P.PlotUtils.getQuadricBSplineFactor(s, g);
i += a * t[n + s][0], y += a * t[n + s][1]
}
e.push([i, y])
}
return e.push(t[t.length - 1]), e
}, P.PlotUtils.getQuadricBSplineFactor = function(t, o) {
return 0 == t ? Math.pow(o - 1, 2) / 2 : 1 == t ? (-2 * Math.pow(o, 2) + 2 * o + 1) / 2 : 2 == t ? Math.pow(o, 2) / 2 : 0
},P.Constants = {
TWO_PI: 2 * Math.PI,
HALF_PI: Math.PI / 2,
FITTING_COUNT: 100,
ZERO_TOLERANCE: 1e-4
}